Tensorboard 详解(上篇)

本文深入介绍了Tensorboard,一个用于理解和优化TensorFlow程序的可视化工具。通过Tensorboard,可以清晰地查看计算图结构、节点信息,包括运行时间、内存消耗等。文章以一个简单的计算图为例,展示了如何启动Tensorboard,如何整理和查看计算图,以及如何通过Tensorboard获取节点的详细信息,如运行时间和空间占用。此外,还提到了Tensorboard在展示不同迭代轮数性能指标方面的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

花间提壶华小厨

1. Tensorboard简介

对大部分人而言,深度神经网络就像一个黑盒子,其内部的组织、结构、以及其训练过程很难理清楚,这给深度神经网络原理的理解和工程化带来了很大的挑战。为了解决这个问题,tensorboard应运而生。Tensorboard是tensorflow内置的一个可视化工具,它通过将tensorflow程序输出的日志文件的信息可视化使得tensorflow程序的理解、调试和优化更加简单高效。Tensorboard的可视化依赖于tensorflow程序运行输出的日志文件,因而tensorboard和tensorflow程序在不同的进程中运行。

那如何启动tensorboard呢?下面代码定义了一个简单的用于实现向量加法的计算图。

1. import tensorflow as tf
2. # 定义一个计算图,实现两个向量的减法操作
3. # 定义两个输入,a为常量,b为变量
4. a=tf.constant([10.0, 20.0, 40.0], name='a')
5. b=tf.Variable(tf.random_uniform([3]), name='b')
6. output=tf.add_n([a,b], name='add')
7. # 生成一个具有写权限的日志文件操作对象,将当前命名空间的计算图写进日志中
8. writer=tf.summary.FileWriter('/path/to/logs', tf.get_default_graph())
9. writer.close()

在上面程序的8、9行中,创建一个writer,将tensorboard summary写入文件夹/path/to/logs,然后运行上面的程序,在程序定义的日志文件夹/path/to/logs目录下,生成了一个新的日志文件events.out.tfevents.1524711020.bdi-172,如下图1所示。当然,这里的日志文件夹也可以由读者自行指定,但是要确保文件夹存在。如果使用的tensorboard版本比较低,那么直接运行上面的代码可能会报错,此时,可以尝试将第8行代码改为file_writer=tf.train.SummaryWriter(‘/path/to/logs’, sess.graph)

图1 日志目录下生成的events文件路径

接着运行如图2所示命令tensorboard –logdir /path/to/logs来启动服务。

图2 linux下启动tensorboard服务的命令

注意,当系统报错,找不到tensorboard命令时,则需要使用绝对路径调用tensorboard,例如下面的命令形式:

python tensorflow/tensorboard/tensorboard.py --logdir=path/to/log-directory

图3 tensorflow向量相加程序的计算图的可视化结果

启动tensorboard服务后,在本地浏览器中输入http://188.88.88.88:6006,会看到如上图3所示的界面。注意,由于本节程序是在Linux服务器上运行的,所以需要输入该服务器完整的IP地址(http://188.88.88.88:6006指本

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值