TF2目标检测API

本文介绍了Tensorflow 2.x目标检测API(TF2 OD API)的改进,特别是引入了Eager执行和新的SOTA模型,如EfficientDet。文章详细讨论了EfficientDet模型的特性,如EfficientNet backbone和BiFPN,并展示了如何评估预训练的EfficientDet模型。此外,文章提到了Allegro Trains作为实验管理工具的有效性,并给出了如何使用TF OD API提高建筑工地安全性的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者|Ivan Ralašić 编译|VK 来源|Analytics Vidhya

Tensorflow目标检测API(TF OD API)刚刚变得更好。最近,Google发布了tf od api的新版本,它现在支持Tensorflow 2.x,这是一个我们一直在等待的巨大改进!

简介

最近目标检测(OD)的改进是由工业界广泛采用该技术所推动的。汽车制造商使用目标检测来帮助车辆自主驾驶道路,医生使用它改进诊断过程,农民使用它来检测各种农作物疾病……还有许多其他的使用案例(尚未发现),OD可以提供巨大的价值。

Tensorflow是一个深度学习框架,为自然语言处理(NLP)、语音合成、语义分割和目标检测等领域的许多最先进(SOTA)模型提供了支持。tf od api是一个开放源码的目标检测模型集合,它被深度学习爱好者和该领域的不同专家使用。

现在,当我们讨论了基本术语之后,让我们看看新的tf od api提供了什么!


新TF OD API

新的TF2 OD API引入了Eager执行,使得对象检测模型的调试更加容易;它还包括TF2 Model Zoo支持的新的SOTA模型。对于Tensorflow 1.x的好消息是新的OD API是向后兼容的,所以如果你喜欢,你仍然可以使用TF1,尽管强烈建议切换到TF2 !

除了SSD (MobileNet/ResNet),Faster R-CNN (ResNet/Inception ResNet),和Mask R-CNN模型在TF1 Model Zoo,TF2 Model Zoo引入了新的SOTA模型,如CenterNet, ExtremeNet,和EfficientDet。

TF2 OD API Model Zoo 中的模型是在COCO 2017数据集上预训练的,如果你对数据集中已经包含的类别感兴趣或在新的数据集中进行训练时可以用预训练模型初始化你的模型。预训练模型对于开箱即用的推断很有用。

使用TF OD API模型而不是自己实现SOTA模型可以让你有更多的时间关注数据,这是实现OD模型高性能的另一个关键因素。然而,即使你决定自己构建模型,TF OD API模型也提供了一个很好的性能基准测试!

根据你的要求,你可以从一长串不同型号中进行选择(速度与精度):

Model name Speed (ms) COCO mAP Outputs
CenterNet HourGlass104 512x512 70 41.9 Boxes
CenterNet HourGlass104 Keypoints 512x512 76 40.0/61.4 Boxes/Keypoints
CenterNet HourGlass104 1024x1024 197 44.5 Boxes
CenterNet HourGlass104 Keypoints 1024x1024 211 42.8/64.5 Boxes/Keypoints
CenterNet Resnet50 V1 FPN 512x512 27 31.2 Boxes
CenterNet Resnet50 V1 FPN Keypoints 512x512 30 29.3/50.7 Boxes/Keypoints
CenterNet Resnet101 V1 FPN 512x512 34 34.2 Boxes
CenterNet Resnet50 V2 512x512 27 29.5 Boxes
CenterNet Resnet50 V2 Keypoints 512x512 30 27.6/48.2 Boxes/Keypoints
EfficientDet D0 512x512 39 33.6 Boxes
EfficientDet D1 640x640 54 38.4 Boxes
EfficientDet D2 768x768 67 41.8 Boxes
EfficientDet D3 896x896 95 45.4 Boxes
EfficientDet D4 1024x1024 133 48.5 Boxes
EfficientDet D5 1280x1280 222 49.7 Boxes
EfficientDet D6 1280x1280
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值