Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where
m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2 3 5 7 15 6 4 10296 936 1287 792 1
Sample Output
105 10296
分析:本题是求每组数据中的最小公倍数是多少;
代码:
#include<stdio.h>
#include<math.h>
int gcd(int a,int b)
{
return !b?a:gcd(b,a%b);
}
int main()
{
int n,t,m,i,b;
scanf("%d",&n);
while(n--)
{
scanf("%d%d",&t,&m);
for(i=1;i<t;i++)
{
scanf("%d",&b);
m=m/gcd(m,b)*b;
}
printf("%d\n",m);
}
return 0;
}
数组方法:
#include<stdio.h>
#include<math.h>
int a[1000000];
int gcd(int a,int b)
{
<span style="white-space:pre"> </span> return !b?a:gcd(b,a%b);
<span style="white-space:pre"> </span>
}
int main()
{
<span style="white-space:pre"> </span>int n,t,m,i;
<span style="white-space:pre"> </span>scanf("%d",&n);
<span style="white-space:pre"> </span>while(n--)
<span style="white-space:pre"> </span>{
<span style="white-space:pre"> </span>scanf("%d",&t);
<span style="white-space:pre"> </span> for(i=0;i<t;i++)<span style="white-space:pre"> </span>
<span style="white-space:pre"> </span> scanf("%d",&a[i]);
<span style="white-space:pre"> </span> m=a[0];
<span style="white-space:pre"> </span> //printf("%d\n",m);
<span style="white-space:pre"> </span> for(i=1;i<t;i++)
<span style="white-space:pre"> </span> <span style="white-space:pre"> </span>m=m/gcd(m,a[i])*a[i];
<span style="white-space:pre"> </span> <span style="white-space:pre"> </span>printf("%d\n",m);
<span style="white-space:pre"> </span>}
<span style="white-space:pre"> </span>return 0;
}