1143. Lowest Common Ancestor (30)

本文介绍了一种高效算法来解决二叉搜索树中两个节点的最低公共祖先(LCA)问题。通过预处理二叉搜索树的前序遍历序列,并结合中序遍历的性质,快速定位LCA。此外,还提供了完整的代码实现和样例输入输出。

1143. Lowest Common Ancestor (30)
时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B
判题程序 Standard 作者 CHEN, Yue

The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given any two nodes in a BST, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (<= 1000), the number of pairs of nodes to be tested; and N (<= 10000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line “LCA of U and V is A.” if the LCA is found and A is the key. But if A is one of U and V, print “X is an ancestor of Y.” where X is A and Y is the other node. If U or V is not found in the BST, print in a line “ERROR: U is not found.” or “ERROR: V is not found.” or “ERROR: U and V are not found.”.
Sample Input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

注意点:不能直接进行插入建树,会超时…

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <stack>
#include <set>
using namespace std;
const int Maxn = 10000;

typedef struct node {
    int data;
    struct node* lchild;
    struct node* rchild;
    node() { lchild = rchild = nullptr; }
}TNode, *PTNode;


int M, N;
set<int> keys;
int pre[Maxn], in[Maxn];

//void Insert(PTNode  & root, int data) {
//  if (!root) {
//      root = new TNode;
//      root->data = data;
//      return;
//  }
//  else if (root->data < data) Insert(root->rchild, data);
//  else if (root->data > data) Insert(root->lchild, data);
//}

PTNode CreateBST(int pre[], int in[], int p_l, int p_r, int i_l, int i_r) {
    if (p_l > p_r) return nullptr;
    PTNode root = new TNode;
    root->data = pre[p_l];

    int idx = i_l;
    while (idx < i_r && in[idx] != pre[p_l])++idx;
    root->lchild = CreateBST(pre, in, p_l + 1, p_l + idx - i_l - 1, i_l, idx - 1);
    root->rchild = CreateBST(pre, in, p_l + idx - i_l + 1, p_r, idx + 1, i_r);
    return root;
}


int findLCA(PTNode root, int e1, int e2, bool &ans1, bool &ans2) {
    if (e1 < root->data && e2 < root->data)  return findLCA(root->lchild, e1, e2, ans1, ans2);//如果当前根节点均小于查询的两个节点,则最小近公共祖先在左子树
    else if (e1 > root->data && e2 > root->data)  return findLCA(root->rchild, e1, e2, ans1, ans2);//如果当前根节点均大于查询的两个节点,则最小近公共祖先在右子树
    else if (e1 > root->data && e2 < root->data || e1 < root->data && e2 > root->data) return root->data;//如果一大一小,那么当前节点肯定是其最近公共祖先
    else { //否则其中一个值一定是另一个值的祖先
        if (e1 != root->data)ans2 = true;
        else ans1 = true;
        return root->data;
    }
}


int main()
{
#ifdef _DEBUG
    freopen("data.txt", "r+", stdin);
#endif

    std::ios::sync_with_stdio(false);
    int data;
    cin >> M >> N;
    for (int i = 0; i<N; ++i) {
        cin >> data;
        in[i] = pre[i] = data;
        keys.insert(data);
    }
    sort(in, in + N);
    PTNode root = CreateBST(pre, in, 0, N - 1, 0, N - 1);

    while (M--) {
        bool f1flag = true, f2flag = true;
        int e1, e2;
        cin >> e1 >> e2;
        if (keys.find(e1) == keys.end()) f1flag = false;
        if (keys.find(e2) == keys.end()) f2flag = false;

        if (f1flag == false || f2flag == false) {
            if (f1flag && !f2flag) cout << "ERROR: " << e2 << " is not found.\n";
            else if (!f1flag && f2flag) cout << "ERROR: " << e1 << " is not found.\n";
            else cout << "ERROR: " << e1 << " and " << e2 << " are not found.\n";
            continue;
        }
        bool ans1 = false, ans2 = false;
        int LCAD = findLCA(root, e1, e2, ans1, ans2);
        if (ans1)cout << e1 << " is an ancestor of " << e2 << ".\n";
        else if (ans2) cout << e2 << " is an ancestor of " << e1 << ".\n";
        else cout << "LCA of " << e1 << " and " << e2 << " is " << LCAD << ".\n";
    }

    return 0;
}
内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过分析当前企业面临的资源分散、内容同质、效果难量化等核心痛点,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特点与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节点定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算分配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节点(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算分配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
先展示下效果 https://pan.quark.cn/s/987bb7a43dd9 VeighNa - By Traders, For Traders, AI-Powered. Want to read this in english ? Go here VeighNa是一套基于Python的开源量化交易系统开发框架,在开源社区持续不断的贡献下一步步成长为多功能量化交易平台,自发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。 在使用VeighNa进行二次开发(策略、模块等)的过程中有任何疑问,请查看VeighNa项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验分享】板块分享你的使用心得! 想要获取更多关于VeighNa的资讯信息? 请扫描下方二维码添加小助手加入【VeighNa社区交流微信群】: AI-Powered VeighNa发布十周年之际正式推出4.0版本,重磅新增面向AI量化策略的vnpy.alpha模块,为专业量化交易员提供一站式多因子机器学习(ML)策略开发、投研和实盘交易解决方案: :bar_chart: dataset:因子特征工程 * 专为ML算法训练优化设计,支持高效批量特征计算与处理 * 内置丰富的因子特征表达式计算引擎,实现快速一键生成训练数据 * Alpha 158:源于微软Qlib项目的股票市场特征集合,涵盖K线形态、价格趋势、时序波动等多维度量化因子 :bulb: model:预测模型训练 * 提供标准化的ML模型开发模板,大幅简化模型构建与训练流程 * 统一API接口设计,支持无缝切换不同算法进行性能对比测试 * 集成多种主流机器学习算法: * Lass...
以下是C#中二叉树的lowest common ancestor的源代码: ```csharp using System; public class Node { public int value; public Node left; public Node right; public Node(int value) { this.value = value; this.left = null; this.right = null; } } public class BinaryTree { public Node root; public BinaryTree() { this.root = null; } public Node LowestCommonAncestor(Node node, int value1, int value2) { if (node == null) { return null; } if (node.value == value1 || node.value == value2) { return node; } Node left = LowestCommonAncestor(node.left, value1, value2); Node right = LowestCommonAncestor(node.right, value1, value2); if (left != null && right != null) { return node; } return (left != null) ? left : right; } } public class Program { public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); Node lca = tree.LowestCommonAncestor(tree.root, 4, 5); Console.WriteLine("Lowest Common Ancestor of 4 and 5: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 4, 6); Console.WriteLine("Lowest Common Ancestor of 4 and 6: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 3, 4); Console.WriteLine("Lowest Common Ancestor of 3 and 4: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 2, 4); Console.WriteLine("Lowest Common Ancestor of 2 and 4: " + lca.value); } } ``` 在上面的代码中,我们定义了一个Node类和一个BinaryTree类。我们使用BinaryTree类来创建二叉树,并实现了一个LowestCommonAncestor方法来计算二叉树中给定两个节点的最近公共祖先。 在LowestCommonAncestor方法中,我们首先检查给定节点是否为null或与给定值之一匹配。如果是,则返回该节点。否则,我们递归地在左子树和右子树上调用LowestCommonAncestor方法,并检查它们的返回值。如果左子树和右子树的返回值都不为null,则当前节点是它们的最近公共祖先。否则,我们返回非null的那个子树的返回值。 在Main方法中,我们创建了一个二叉树,并测试了LowestCommonAncestor方法的几个不同输入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值