1143. Lowest Common Ancestor (30)

本文介绍了一种高效算法来解决二叉搜索树中两个节点的最低公共祖先(LCA)问题。通过预处理二叉搜索树的前序遍历序列,并结合中序遍历的性质,快速定位LCA。此外,还提供了完整的代码实现和样例输入输出。

1143. Lowest Common Ancestor (30)
时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B
判题程序 Standard 作者 CHEN, Yue

The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given any two nodes in a BST, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (<= 1000), the number of pairs of nodes to be tested; and N (<= 10000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line “LCA of U and V is A.” if the LCA is found and A is the key. But if A is one of U and V, print “X is an ancestor of Y.” where X is A and Y is the other node. If U or V is not found in the BST, print in a line “ERROR: U is not found.” or “ERROR: V is not found.” or “ERROR: U and V are not found.”.
Sample Input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

注意点:不能直接进行插入建树,会超时…

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <stack>
#include <set>
using namespace std;
const int Maxn = 10000;

typedef struct node {
    int data;
    struct node* lchild;
    struct node* rchild;
    node() { lchild = rchild = nullptr; }
}TNode, *PTNode;


int M, N;
set<int> keys;
int pre[Maxn], in[Maxn];

//void Insert(PTNode  & root, int data) {
//  if (!root) {
//      root = new TNode;
//      root->data = data;
//      return;
//  }
//  else if (root->data < data) Insert(root->rchild, data);
//  else if (root->data > data) Insert(root->lchild, data);
//}

PTNode CreateBST(int pre[], int in[], int p_l, int p_r, int i_l, int i_r) {
    if (p_l > p_r) return nullptr;
    PTNode root = new TNode;
    root->data = pre[p_l];

    int idx = i_l;
    while (idx < i_r && in[idx] != pre[p_l])++idx;
    root->lchild = CreateBST(pre, in, p_l + 1, p_l + idx - i_l - 1, i_l, idx - 1);
    root->rchild = CreateBST(pre, in, p_l + idx - i_l + 1, p_r, idx + 1, i_r);
    return root;
}


int findLCA(PTNode root, int e1, int e2, bool &ans1, bool &ans2) {
    if (e1 < root->data && e2 < root->data)  return findLCA(root->lchild, e1, e2, ans1, ans2);//如果当前根节点均小于查询的两个节点,则最小近公共祖先在左子树
    else if (e1 > root->data && e2 > root->data)  return findLCA(root->rchild, e1, e2, ans1, ans2);//如果当前根节点均大于查询的两个节点,则最小近公共祖先在右子树
    else if (e1 > root->data && e2 < root->data || e1 < root->data && e2 > root->data) return root->data;//如果一大一小,那么当前节点肯定是其最近公共祖先
    else { //否则其中一个值一定是另一个值的祖先
        if (e1 != root->data)ans2 = true;
        else ans1 = true;
        return root->data;
    }
}


int main()
{
#ifdef _DEBUG
    freopen("data.txt", "r+", stdin);
#endif

    std::ios::sync_with_stdio(false);
    int data;
    cin >> M >> N;
    for (int i = 0; i<N; ++i) {
        cin >> data;
        in[i] = pre[i] = data;
        keys.insert(data);
    }
    sort(in, in + N);
    PTNode root = CreateBST(pre, in, 0, N - 1, 0, N - 1);

    while (M--) {
        bool f1flag = true, f2flag = true;
        int e1, e2;
        cin >> e1 >> e2;
        if (keys.find(e1) == keys.end()) f1flag = false;
        if (keys.find(e2) == keys.end()) f2flag = false;

        if (f1flag == false || f2flag == false) {
            if (f1flag && !f2flag) cout << "ERROR: " << e2 << " is not found.\n";
            else if (!f1flag && f2flag) cout << "ERROR: " << e1 << " is not found.\n";
            else cout << "ERROR: " << e1 << " and " << e2 << " are not found.\n";
            continue;
        }
        bool ans1 = false, ans2 = false;
        int LCAD = findLCA(root, e1, e2, ans1, ans2);
        if (ans1)cout << e1 << " is an ancestor of " << e2 << ".\n";
        else if (ans2) cout << e2 << " is an ancestor of " << e1 << ".\n";
        else cout << "LCA of " << e1 << " and " << e2 << " is " << LCAD << ".\n";
    }

    return 0;
}
C语言-光伏MPPT算法:电导增量法扰动观察法+自动全局搜索Plecs最大功率跟踪算法仿真内容概要:本文档主要介绍了一种基于C语言实现的光伏最大功率点跟踪(MPPT)算法,结合电导增量法与扰动观察法,并引入自动全局搜索策略,利用Plecs仿真工具对算法进行建模与仿真验证。文档重点阐述了两种经典MPPT算法的原理、优缺点及其在不同光照和温度条件下的动态响应特性,同时提出一种改进的复合控制策略以提升系统在复杂环境下的跟踪精度与稳定性。通过仿真结果对比分析,验证了所提方法在快速性和准确性方面的优势,适用于光伏发电系统的高效能量转换控制。; 适合人群:具备一定C语言编程基础和电力电子知识背景,从事光伏系统开发、嵌入式控制或新能源技术研发的工程师及高校研究人员;工作年限1-3年的初级至中级研发人员尤为适合。; 使用场景及目标:①掌握电导增量法与扰动观察法在实际光伏系统中的实现机制与切换逻辑;②学习如何在Plecs中搭建MPPT控制系统仿真模型;③实现自动全局搜索以避免传统算法陷入局部峰值问题,提升复杂工况下的最大功率追踪效率;④为光伏逆变器或太阳能充电控制器的算法开发提供技术参考与实现范例。; 阅读建议:建议读者结合文中提供的C语言算法逻辑与Plecs仿真模型同步学习,重点关注算法判断条件、步长调节策略及仿真参数设置。在理解基本原理的基础上,可通过修改光照强度、温度变化曲线等外部扰动因素,进一步测试算法鲁棒性,并尝试将其移植到实际嵌入式平台进行实验验证。
以下是C#中二叉树的lowest common ancestor的源代码: ```csharp using System; public class Node { public int value; public Node left; public Node right; public Node(int value) { this.value = value; this.left = null; this.right = null; } } public class BinaryTree { public Node root; public BinaryTree() { this.root = null; } public Node LowestCommonAncestor(Node node, int value1, int value2) { if (node == null) { return null; } if (node.value == value1 || node.value == value2) { return node; } Node left = LowestCommonAncestor(node.left, value1, value2); Node right = LowestCommonAncestor(node.right, value1, value2); if (left != null && right != null) { return node; } return (left != null) ? left : right; } } public class Program { public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); Node lca = tree.LowestCommonAncestor(tree.root, 4, 5); Console.WriteLine("Lowest Common Ancestor of 4 and 5: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 4, 6); Console.WriteLine("Lowest Common Ancestor of 4 and 6: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 3, 4); Console.WriteLine("Lowest Common Ancestor of 3 and 4: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 2, 4); Console.WriteLine("Lowest Common Ancestor of 2 and 4: " + lca.value); } } ``` 在上面的代码中,我们定义了一个Node类和一个BinaryTree类。我们使用BinaryTree类来创建二叉树,并实现了一个LowestCommonAncestor方法来计算二叉树中给定两个节点的最近公共祖先。 在LowestCommonAncestor方法中,我们首先检查给定节点是否为null或与给定值之一匹配。如果是,则返回该节点。否则,我们递归地在左子树和右子树上调用LowestCommonAncestor方法,并检查它们的返回值。如果左子树和右子树的返回值都不为null,则当前节点是它们的最近公共祖先。否则,我们返回非null的那个子树的返回值。 在Main方法中,我们创建了一个二叉树,并测试了LowestCommonAncestor方法的几个不同输入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值