/*****************************************************************************
* dct.c: transform and zigzag
*****************************************************************************
* Copyright (C) 2003-2013 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Laurent Aimar <fenrir@via.ecp.fr>
* Henrik Gramner <hengar-6@student.ltu.se>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#include "common.h"
#if HAVE_MMX
# include "x86/dct.h"
#endif
#if ARCH_PPC
# include "ppc/dct.h"
#endif
#if ARCH_ARM
# include "arm/dct.h"
#endif
/* the inverse of the scaling factors introduced by 8x8 fdct */
/* uint32 is for the asm implementation of trellis. the actual values fit in uint16. */
#define W(i) (i==0 ? FIX8(1.0000) :\
i==1 ? FIX8(0.8859) :\
i==2 ? FIX8(1.6000) :\
i==3 ? FIX8(0.9415) :\
i==4 ? FIX8(1.2651) :\
i==5 ? FIX8(1.1910) :0)
const uint32_t x264_dct8_weight_tab[64] = {
W(0), W(3), W(4), W(3), W(0), W(3), W(4), W(3),
W(3), W(1), W(5), W(1), W(3), W(1), W(5), W(1),
W(4), W(5), W(2), W(5), W(4), W(5), W(2), W(5),
W(3), W(1), W(5), W(1), W(3), W(1), W(5), W(1),
W(0), W(3), W(4), W(3), W(0), W(3), W(4), W(3),
W(3), W(1), W(5), W(1), W(3), W(1), W(5), W(1),
W(4), W(5), W(2), W(5), W(4), W(5), W(2), W(5),
W(3), W(1), W(5), W(1), W(3), W(1), W(5), W(1)
};
#undef W
#define W(i) (i==0 ? FIX8(1.76777) :\
i==1 ? FIX8(1.11803) :\
i==2 ? FIX8(0.70711) :0)
const uint32_t x264_dct4_weight_tab[16] = {
W(0), W(1), W(0), W(1),
W(1), W(2), W(1), W(2),
W(0), W(1), W(0), W(1),
W(1), W(2), W(1), W(2)
};
#undef W
/* inverse squared */
#define W(i) (i==0 ? FIX8(3.125) :\
i==1 ? FIX8(1.25) :\
i==2 ? FIX8(0.5) :0)
const uint32_t x264_dct4_weight2_tab[16] = {
W(0), W(1), W(0), W(1),
W(1), W(2), W(1), W(2),
W(0), W(1), W(0), W(1),
W(1), W(2), W(1), W(2)
};
#undef W
#define W(i) (i==0 ? FIX8(1.00000) :\
i==1 ? FIX8(0.78487) :\
i==2 ? FIX8(2.56132) :\
i==3 ? FIX8(0.88637) :\
i==4 ? FIX8(1.60040) :\
i==5 ? FIX8(1.41850) :0)
const uint32_t x264_dct8_weight2_tab[64] = {
W(0), W(3), W(4), W(3), W(0), W(3), W(4), W(3),
W(3), W(1), W(5), W(1), W(3), W(1), W(5), W(1),
W(4), W(5), W(2), W(5), W(4), W(5), W(2), W(5),
W(3), W(1), W(5), W(1), W(3), W(1), W(5), W(1),
W(0), W(3), W(4), W(3), W(0), W(3), W(4), W(3),
W(3), W(1), W(5), W(1), W(3), W(1), W(5), W(1),
W(4), W(5), W(2), W(5), W(4), W(5), W(2), W(5),
W(3), W(1), W(5), W(1), W(3), W(1), W(5), W(1)
};
#undef W
// 4x4 dc Hadamard transform
// H4
// 1 1 1 1
// 1 1 -1 -1
// 1 -1 -1 1
// 1 -1 1 -1
数学表达式
==》 Yd = (H4 * Wd * H4) / 2
static void dct4x4dc( dctcoef d[16] )
{
dctcoef tmp[16];
for( int i = 0; i < 4; i++ )
{ // 先对4x4 Wd 的行进行H4 变换, 即Yd' = Wd * H4
int s01 = d[i*4+0] + d[i*4+1];
int d01 = d[i*4+0] - d[i*4+1];
int s23 = d[i*4+2] + d[i*4+3];
int d23 = d[i*4+2] - d[i*4+3];
// 注意这里, 对Yd' 的进行转置存储, T(Yd')
tmp[0*4+i] = s01 + s23;
tmp[1*4+i] = s01 - s23;
tmp[2*4+i] = d01 - d23;
tmp[3*4+i] = d01 + d23;
}
for( int i = 0; i < 4; i++ )
{ // Yd = H4 * Yd' => T(Yd) = T(Yd') * T(H4) = T(Yd') * H4
// 因此, 这里仍然对T(Yd') 的行进行 H4变换
// 最终结果存储的是T(Yd), 而不是Yd
// 即输出的是Yd的转置
int s01 = tmp[i*4+0] + tmp[i*4+1];
int d01 = tmp[i*4+0] - tmp[i*4+1];
int s23 = tmp[i*4+2] + tmp[i*4+3];
int d23 = tmp[i*4+2] - tmp[i*4+3];
d[i*4+0] = ( s01 + s23 + 1 ) >> 1;
d[i*4+1] = ( s01 - s23 + 1 ) >> 1;
d[i*4+2] = ( d01 - d23 + 1 ) >> 1;
d[i*4+3] = ( d01 + d23 + 1 ) >> 1;
}
}
// 4x4 dc inverse Hadamard transform
// H4
// 1 1 1 1
// 1 1 -1 -1
// 1 -1 -1 1
// 1 -1 1 -1
数学表达式
==》 Wqd = (H4 * Zd * H4)
static void idct4x4dc( dctcoef d[16] )
{
dctcoef tmp[16];
for( int i = 0; i < 4; i++ )
{
int s01 = d[i*4+0] + d[i*4+1];
int d01 = d[i*4+0] - d[i*4+1];
int s23 = d[i*4+2] + d[i*4+3];
int d23 = d[i*4+2] - d[i*4+3];
tmp[0*4+i] = s01 + s23;
tmp[1*4+i] = s01 - s23;
tmp[2*4+i] = d01 - d23;
tmp[3*4+i] = d01 + d23;
}
for( int i = 0; i < 4; i++ )
{
int s01 = tmp[i*4+0] + tmp[i*4+1];
int d01 = tmp[i*4+0] - tmp[i*4+1];
int s23 = tmp[i*4+2] + tmp[i*4+3];
int d23 = tmp[i*4+2] - tmp[i*4+3];
d[i*4+0] = s01 + s23;
d[i*4+1] = s01 - s23;
d[i*4+2] = d01 - d23;
d[i*4+3] = d01 + d23;
}
}
// 4:2:2 chroma dc 2x4Hadamard transform
// 这里 2x4指 w = 2, h = 4
// H4
// 1 1 1 1
// 1 1 -1 -1
// 1 -1 -1 1
// 1 -1 1 -1
// H2
// 1 1
// 1 -1
// Wd (数学表达式)
// 0 1
// 2 3
// 4 5
// 6 7
数学表达式
==> Yd = H4 * Wd * H2
static void dct2x4dc( dctcoef dct[8], dctcoef dct4x4[8][16] )
{
// 先求 Wd' = Wd * H2, 得到
// a0 a4
// a1 a5
// a2 a6
// a3 a7
int a0 = dct4x4[0][0] + dct4x4[1][0];
int a1 = dct4x4[2][0] + dct4x4[3][0];
int a2 = dct4x4[4][0] + dct4x4[5][0];
int a3 = dct4x4[6][0] + dct4x4[7][0];
int a4 = dct4x4[0][0] - dct4x4[1][0];
int a5 = dct4x4[2][0] - dct4x4[3][0];
int a6 = dct4x4[4][0] - dct4x4[5][0];
int a7 = dct4x4[6][0] - dct4x4[7][0];
// 再求 Yd = H4 * Wd'
int b0 = a0 + a1;
int b1 = a2 + a3;
int b2 = a4 + a5;
int b3 = a6 + a7;
int b4 = a0 - a1;
int b5 = a2 - a3;
int b6 = a4 - a5;
int b7 = a6 - a7;
dct[0] = b0 + b1;
dct[1] = b2 + b3;
dct[2] = b0 - b1;
dct[3] = b2 - b3;
dct[4] = b4 - b5;
dct[5] = b6 - b7;
dct[6] = b4 + b5;
dct[7] = b6 + b7;
dct4x4[0][0] = 0;
dct4x4[1][0] = 0;
dct4x4[2][0] = 0;
dct4x4[3][0] = 0;
dct4x4[4][0] = 0;
dct4x4[5][0] = 0;
dct4x4[6][0] = 0;
dct4x4[7][0] = 0;
}
// pixel_sub_wxh 对 两个像素矩阵求残差
static inline void pixel_sub_wxh( dctcoef *diff, int i_size,
pixel *pix1, int i_pix1, pixel *pix2, int i_pix2 )
{
for( int y = 0; y < i_size; y++ )
{
for( int x = 0; x < i_size; x++ )
diff[x + y*i_size] = pix1[x] - pix2[x];
pix1 += i_pix1;
pix2 += i_pix2;
}
}
// sub4x4_dct 残差的 4x4 dct 变换
// Cf4 =
// 1 1 1 1
// 2 1 -1 -2
// 1 -1 -1 1
// 1 -2 2 -1
// T(Cf4)(Cf4转置) =
// 1 2 1 1
// 1 1 -1 -2
// 1 -1 -1 2
// 1 -2 1 -1
数学公式 Y = Cf4 * X * T(Cf4)
static void sub4x4_dct( dctcoef dct[16], pixel *pix1, pixel *pix2 )
{
dctcoef d[16];
dctcoef tmp[16];
// 求两4x4像素矩阵残差
pixel_sub_wxh( d, 4, pix1, FENC_STRIDE, pix2, FDEC_STRIDE );
// 对残差求4x4 dct 变换
for( int i = 0; i < 4; i++ )
{ // 先求 Y' = X * T(Cf4), 即对矩阵的行进行变换
int s03 = d[i*4+0] + d[i*4+3];
int s12 = d[i*4+1] + d[i*4+2];
int d03 = d[i*4+0] - d[i*4+3];
int d12 = d[i*4+1] - d[i*4+2];
// 注意这里存储的是Y‘的转置换, 即行向量Y'转换为列向量存储
tmp[0*4+i] = s03 + s12;
tmp[1*4+i] = 2*d03 + d12;
tmp[2*4+i] = s03 - s12;
tmp[3*4+i] = d03 - 2*d12;
}
for( int i = 0; i < 4; i++ )
{ // 再求 Y = Cf4 * Y', 即对T的列进行变换
// 这里呼应前面Y'转置存储,实际计算的是
// T(Y) = T(Y') * T(Cf4)
// 因此求的是对T(Y')进行的行变换
int s03 = tmp[i*4+0] + tmp[i*4+3];
int s12 = tmp[i*4+1] + tmp[i*4+2];
int d03 = tmp[i*4+0] - tmp[i*4+3];
int d12 = tmp[i*4+1] - tmp[i*4+2];
// 因此最终结果保存的是T(Y)
dct[i*4+0] = s03 + s12;
dct[i*4+1] = 2*d03 + d12;
dct[i*4+2] = s03 - s12;
dct[i*4+3] = d03 - 2*d12;
}
}
static void sub8x8_dct( dctcoef dct[4][16], pixel *pix1, pixel *pix2 )
{
// 8x8 => 4 个 4 x 4, each 4x4 layout
// 0 1
// 2 3
// 对 4x4 宏块 0 进行 sub4x4_dct 变换
sub4x4_dct( dct[0], &pix1[0], &pix2[0] );
// 对 4x4 宏块 1 进行 sub4x4_dct 变换
sub4x4_dct( dct[1], &pix1[4], &pix2[4] );
// 对 4x4 宏块 2 进行 sub4x4_dct 变换
sub4x4_dct( dct[2], &pix1[4*FENC_STRIDE+0], &pix2[4*FDEC_STRIDE+0] );
// 对 4x4 宏块 3 进行 sub4x4_dct 变换
sub4x4_dct( dct[3], &pix1[4*FENC_STRIDE+4], &pix2[4*FDEC_STRIDE+4] );
}
static void sub16x16_dct( dctcoef dct[16][16], pixel *pix1, pixel *pix2 )
{
// 16x16 => 4 个 8x 8, each 8x8 layout
// 0 1
// 2 3
// 对 8x8 宏块 0 进行 sub8x8_dct 变换
sub8x8_dct( &dct[ 0], &pix1[0], &pix2[0] );
// 对 8x8 宏块 1 进行 sub8x8_dct 变换
sub8x8_dct( &dct[ 4], &pix1[8], &pix2[8] );
// 对 8x8 宏块 2 进行 sub8x8_dct 变换
sub8x8_dct( &dct[ 8], &pix1[8*FENC_STRIDE+0], &pix2[8*FDEC_STRIDE+0] );
// 对 8x8 宏块 3 进行 sub8x8_dct 变换
sub8x8_dct( &dct[12], &pix1[8*FENC_STRIDE+8], &pix2[8*FDEC_STRIDE+8] );
}
// sub4x4_dct_dc 求两个4x4宏块的残差之和
static int sub4x4_dct_dc( pixel *pix1, pixel *pix2 )
{
int sum = 0;
for( int i=0; i<4; i++, pix1 += FENC_STRIDE, pix2 += FDEC_STRIDE )
sum += pix1[0] + pix1[1] + pix1[2] + pix1[3]
- pix2[0] - pix2[1] - pix2[2] - pix2[3];
return sum;
}
// sub8x8_dct_dc
// 先将一个8x8宏块分割为4个4x4宏块,
// 然后对每个4x4宏块求残差之和
// 最后对 2x2 残差之和 宏块 进行 2x2 Hadamard变换
static void sub8x8_dct_dc( dctcoef dct[4], pixel *pix1, pixel *pix2 )
{
// 一个 8x8 宏块 可 分割为 4 个 4x4 宏块,
// 4 个 4x4 宏块 layout
// 0 1
// 2 3
// 对 4x4 宏块 0 进行残差求和
dct[0] = sub4x4_dct_dc( &pix1[0], &pix2[0] );
// 对 4x4 宏块 1 进行残差求和
dct[1] = sub4x4_dct_dc( &pix1[4], &pix2[4] );
// 对 4x4 宏块 2 进行残差求和
dct[2] = sub4x4_dct_dc( &pix1[4*FENC_STRIDE+0], &pix2[4*FDEC_STRIDE+0] );
// 对 4x4 宏块 3 进行残差求和
dct[3] = sub4x4_dct_dc( &pix1[4*FENC_STRIDE+4], &pix2[4*FDEC_STRIDE+4] );
// 对 2x2 残差之和宏块进行Hadamard2变换
/* 2x2 DC transform */
int d0 = dct[0] + dct[1];
int d1 = dct[2] + dct[3];
int d2 = dct[0] - dct[1];
int d3 = dct[2] - dct[3];
dct[0] = d0 + d1;
dct[1] = d0 - d1;
dct[2] = d2 + d3;
dct[3] = d2 - d3;
}
static void sub8x16_dct_dc( dctcoef dct[8], pixel *pix1, pixel *pix2 )
{
// 一个 wxh = 8x16 宏块 可 分割为 8 个 4x4 宏块,
// 8 个 4x4 宏块 layout
// 0 1
// 2 3
// 4 5
// 6 7
// 对 4x4 宏块 0 求残差之和
int a0 = sub4x4_dct_dc( &pix1[ 0*FENC_STRIDE+0], &pix2[ 0*FDEC_STRIDE+0] );
// 对 4x4 宏块 1 求残差之和
int a1 = sub4x4_dct_dc( &pix1[ 0*FENC_STRIDE+4], &pix2[ 0*FDEC_STRIDE+4] );
// 对 4x4 宏块 2 求残差之和
int a2 = sub4x4_dct_dc( &pix1[ 4*FENC_STRIDE+0], &pix2[ 4*FDEC_STRIDE+0] );
// 对 4x4 宏块 3 求残差之和
int a3 = sub4x4_dct_dc( &pix1[ 4*FENC_STRIDE+4], &pix2[ 4*FDEC_STRIDE+4] );
// 对 4x4 宏块 4 求残差之和
int a4 = sub4x4_dct_dc( &pix1[ 8*FENC_STRIDE+0], &pix2[ 8*FDEC_STRIDE+0] );
// 对 4x4 宏块 5 求残差之和
int a5 = sub4x4_dct_dc( &pix1[ 8*FENC_STRIDE+4], &pix2[ 8*FDEC_STRIDE+4] );
// 对 4x4 宏块 6 求残差之和
int a6 = sub4x4_dct_dc( &pix1[12*FENC_STRIDE+0], &pix2[12*FDEC_STRIDE+0] );
// 对 4x4 宏块 7 求残差之和
int a7 = sub4x4_dct_dc( &pix1[12*FENC_STRIDE+4], &pix2[12*FDEC_STRIDE+4] );
// a0 ~ a7 构成一个 wxh = 2x4 的宏块
// 对这个 2x4 宏块 进行 Hadamard2x4 变换
/* 2x4 DC transform */
int b0 = a0 + a1;
int b1 = a2 + a3;
int b2 = a4 + a5;
int b3 = a6 + a7;
int b4 = a0 - a1;
int b5 = a2 - a3;
int b6 = a4 - a5;
int b7 = a6 - a7;
a0 = b0 + b1;
a1 = b2 + b3;
a2 = b4 + b5;
a3 = b6 + b7;
a4 = b0 - b1;
a5 = b2 - b3;
a6 = b4 - b5;
a7 = b6 - b7;
dct[0] = a0 + a1;
dct[1] = a2 + a3;
dct[2] = a0 - a1;
dct[3] = a2 - a3;
dct[4] = a4 - a5;
dct[5] = a6 - a7;
dct[6] = a4 + a5;
dct[7] = a6 + a7;
}
// Ci4 =
// 1 1 1 1
// 1 1/2 -1/2 1
// 1 -1 -1 1
// 1/2 -1 1 -1/2
// T(Ci4) =
// 1 1 1 1/2
// 1 1/2 -1 -1
// 1 -1/2 -1 1
// 1 1 1 -1/2
数学公式
Z = T(Ci4) * Y * Ci4
static void add4x4_idct( pixel *p_dst, dctcoef dct[16] )
{
dctcoef d[16];
dctcoef tmp[16];
for( int i = 0; i < 4; i++ )
{ // 先求 W = T(Ci4) * Y, 即对Y的列进行 T(Ci4) 变换
int s02 = dct[0*4+i] + dct[2*4+i];
int d02 = dct[0*4+i] - dct[2*4+i];
int s13 = dct[1*4+i] + (dct[3*4+i]>>1);
int d13 = (dct[1*4+i]>>1) - dct[3*4+i];
// 对W进行转置存储, 即T(W)
tmp[i*4+0] = s02 + s13;
tmp[i*4+1] = d02 + d13;
tmp[i*4+2] = d02 - d13;
tmp[i*4+3] = s02 - s13;
}
for( int i = 0; i < 4; i++ )
{ // Z = W * Ci4 => T(Z) = T(Ci4) * T(W)
// 因此这里求的是 T(Z), 而不是Z
// 即最终结果是 Z 的 转置
// 因此 d 是按 Z 的 转置来存储的
int s02 = tmp[0*4+i] + tmp[2*4+i];
int d02 = tmp[0*4+i] - tmp[2*4+i];
int s13 = tmp[1*4+i] + (tmp[3*4+i]>>1);
int d13 = (tmp[1*4+i]>>1) - tmp[3*4+i];
d[0*4+i] = ( s02 + s13 + 32 ) >> 6;
d[1*4+i] = ( d02 + d13 + 32 ) >> 6;
d[2*4+i] = ( d02 - d13 + 32 ) >> 6;
d[3*4+i] = ( s02 - s13 + 32 ) >> 6;
}
// 通过残差补偿,重构 4x4 宏块
for( int y = 0; y < 4; y++ )
{
for( int x = 0; x < 4; x++ )
p_dst[x] = x264_clip_pixel( p_dst[x] + d[y*4+x] );
p_dst += FDEC_STRIDE;
}
}
static void add8x8_idct( pixel *p_dst, dctcoef dct[4][16] )
{
// 一个 8x8 块可分割成 4个 4x4 块
// 4个 4x4 块 layout
// 0 1
// 2 3
// 重构 4x4 块 0
add4x4_idct( &p_dst[0], dct[0] );
// 重构 4x4 块 1
add4x4_idct( &p_dst[4], dct[1] );
// 重构 4x4 块 2
add4x4_idct( &p_dst[4*FDEC_STRIDE+0], dct[2] );
// 重构 4x4 块 3
add4x4_idct( &p_dst[4*FDEC_STRIDE+4], dct[3] );
}
static void add16x16_idct( pixel *p_dst, dctcoef dct[16][16] )
{
// 一个 16x16 块可分割成 4个 8x8 块
// 4个 8x8 块 layout
// 0 1
// 2 3
// 重构 8x8 块 0
add8x8_idct( &p_dst[0], &dct[0] );
// 重构 8x8 块 1
add8x8_idct( &p_dst[8], &dct[4] );
// 重构 8x8 块 2
add8x8_idct( &p_dst[8*FDEC_STRIDE+0], &dct[8] );
// 重构 8x8 块 3
add8x8_idct( &p_dst[8*FDEC_STRIDE+8], &dct[12] );
}
// DCT8_1D 对 8x8 块的列进行 dct8变换
/****************************************************************************
* 8x8 transform:
****************************************************************************/
#define DCT8_1D {\
int s07 = SRC(0) + SRC(7);\
int s16 = SRC(1) + SRC(6);\
int s25 = SRC(2) + SRC(5);\
int s34 = SRC(3) + SRC(4);\
int a0 = s07 + s34;\
int a1 = s16 + s25;\
int a2 = s07 - s34;\
int a3 = s16 - s25;\
int d07 = SRC(0) - SRC(7);\
int d16 = SRC(1) - SRC(6);\
int d25 = SRC(2) - SRC(5);\
int d34 = SRC(3) - SRC(4);\
int a4 = d16 + d25 + (d07 + (d07>>1));\
int a5 = d07 - d34 - (d25 + (d25>>1));\
int a6 = d07 + d34 - (d16 + (d16>>1));\
int a7 = d16 - d25 + (d34 + (d34>>1));\
DST(0) = a0 + a1 ;\
DST(1) = a4 + (a7>>2);\
DST(2) = a2 + (a3>>1);\
DST(3) = a5 + (a6>>2);\
DST(4) = a0 - a1 ;\
DST(5) = a6 - (a5>>2);\
DST(6) = (a2>>1) - a3 ;\
DST(7) = (a4>>2) - a7 ;\
}
// 计算公式: Yd = Cf8 * Wd * T(Cf8)
static void sub8x8_dct8( dctcoef dct[64], pixel *pix1, pixel *pix2 )
{
dctcoef tmp[64];
// 对 两 8x8 像素块 求 残差 Wd
pixel_sub_wxh( tmp, 8, pix1, FENC_STRIDE, pix2, FDEC_STRIDE );
#define SRC(x) tmp[x*8+i]
#define DST(x) tmp[x*8+i]
// 对 8x8 的 每一列进行 dct8 变换, 并将计算结果
// 进行转置存储
// Wd' = Cf8 * Wd, => T(Wd')
for( int i = 0; i < 8; i++ )
DCT8_1D
#undef SRC
#undef DST
#define SRC(x) tmp[i*8+x]
#define DST(x) dct[x*8+i]
// 对 8x8 的 每一行进行 dct8 变换
// Yd = Wd' * T(Cf8) => T(Yd) = Cf8 * T(Wd')
// 实际求的是 T(Yd)
for( int i = 0; i < 8; i++ )
DCT8_1D
#undef SRC
#undef DST
}
static void sub16x16_dct8( dctcoef dct[4][64], pixel *pix1, pixel *pix2 )
{
// 一个 16x16 块 可分割为 4个 8x8 块
// 4个 8x8 块 layout
// 0 1
// 2 3
// 对 8x8 块 0 进行 sub8x8_dct8变换
sub8x8_dct8( dct[0], &pix1[0], &pix2[0] );
// 对 8x8 块 1 进行 sub8x8_dct8变换
sub8x8_dct8( dct[1], &pix1[8], &pix2[8] );
// 对 8x8 块 2 进行 sub8x8_dct8变换
sub8x8_dct8( dct[2], &pix1[8*FENC_STRIDE+0], &pix2[8*FDEC_STRIDE+0] );
// 对 8x8 块 3 进行 sub8x8_dct8变换
sub8x8_dct8( dct[3], &pix1[8*FENC_STRIDE+8], &pix2[8*FDEC_STRIDE+8] );
}
// IDCT8_1D 对 8x8 块 的一行 或 一列 进行 idct8变换
#define IDCT8_1D {\
int a0 = SRC(0) + SRC(4);\
int a2 = SRC(0) - SRC(4);\
int a4 = (SRC(2)>>1) - SRC(6);\
int a6 = (SRC(6)>>1) + SRC(2);\
int b0 = a0 + a6;\
int b2 = a2 + a4;\
int b4 = a2 - a4;\
int b6 = a0 - a6;\
int a1 = -SRC(3) + SRC(5) - SRC(7) - (SRC(7)>>1);\
int a3 = SRC(1) + SRC(7) - SRC(3) - (SRC(3)>>1);\
int a5 = -SRC(1) + SRC(7) + SRC(5) + (SRC(5)>>1);\
int a7 = SRC(3) + SRC(5) + SRC(1) + (SRC(1)>>1);\
int b1 = (a7>>2) + a1;\
int b3 = a3 + (a5>>2);\
int b5 = (a3>>2) - a5;\
int b7 = a7 - (a1>>2);\
DST(0, b0 + b7);\
DST(1, b2 + b5);\
DST(2, b4 + b3);\
DST(3, b6 + b1);\
DST(4, b6 - b1);\
DST(5, b4 - b3);\
DST(6, b2 - b5);\
DST(7, b0 - b7);\
}
// 重构 8x8 块
// 数学公式 Z = T(Ci8) * W * Ci8
static void add8x8_idct8( pixel *dst, dctcoef dct[64] )
{
dct[0] += 32; // rounding for the >>6 at the end
#define SRC(x) dct[x*8+i]
#define DST(x,rhs) dct[x*8+i] = (rhs)
// 对每一列进行 idct8变换, 并将结果转置存储
// W' = T(Ci8) * W, T(W')
for( int i = 0; i < 8; i++ )
IDCT8_1D
#undef SRC
#undef DST
#define SRC(x) dct[i*8+x]
#define DST(x,rhs) dst[i + x*FDEC_STRIDE] = x264_clip_pixel( dst[i + x*FDEC_STRIDE] + ((rhs) >> 6) );
// 对每一行进行 idct变换,
// Z = W' * Ci8 => T(z) = T(Ci8) * T(W')
// 输出 是 T(Z)
for( int i = 0; i < 8; i++ )
IDCT8_1D
#undef SRC
#undef DST
}
// 重构 16x16 块
static void add16x16_idct8( pixel *dst, dctcoef dct[4][64] )
{
add8x8_idct8( &dst[0], dct[0] );
add8x8_idct8( &dst[8], dct[1] );
add8x8_idct8( &dst[8*FDEC_STRIDE+0], dct[2] );
add8x8_idct8( &dst[8*FDEC_STRIDE+8], dct[3] );
}
// 对 4x4 目标块 进行 dc 残差 补偿
static void inline add4x4_idct_dc( pixel *p_dst, dctcoef dc )
{
dc = (dc + 32) >> 6;
for( int i = 0; i < 4; i++, p_dst += FDEC_STRIDE )
{
p_dst[0] = x264_clip_pixel( p_dst[0] + dc );
p_dst[1] = x264_clip_pixel( p_dst[1] + dc );
p_dst[2] = x264_clip_pixel( p_dst[2] + dc );
p_dst[3] = x264_clip_pixel( p_dst[3] + dc );
}
}
// 对 8x8 目标块 进行 dc 残差 补偿, 分4个 4x4 块进行
static void add8x8_idct_dc( pixel *p_dst, dctcoef dct[4] )
{
add4x4_idct_dc( &p_dst[0], dct[0] );
add4x4_idct_dc( &p_dst[4], dct[1] );
add4x4_idct_dc( &p_dst[4*FDEC_STRIDE+0], dct[2] );
add4x4_idct_dc( &p_dst[4*FDEC_STRIDE+4], dct[3] );
}
// 对 16x16 目标块 进行 dc 残差 补偿, 分16个 4x4 块进行
static void add16x16_idct_dc( pixel *p_dst, dctcoef dct[16] )
{
for( int i = 0; i < 4; i++, dct += 4, p_dst += 4*FDEC_STRIDE )
{
add4x4_idct_dc( &p_dst[ 0], dct[0] );
add4x4_idct_dc( &p_dst[ 4], dct[1] );
add4x4_idct_dc( &p_dst[ 8], dct[2] );
add4x4_idct_dc( &p_dst[12], dct[3] );
}
}
/****************************************************************************
* x264_dct_init:
****************************************************************************/
void x264_dct_init( int cpu, x264_dct_function_t *dctf )
{
dctf->sub4x4_dct = sub4x4_dct;
dctf->add4x4_idct = add4x4_idct;
dctf->sub8x8_dct = sub8x8_dct;
dctf->sub8x8_dct_dc = sub8x8_dct_dc;
dctf->add8x8_idct = add8x8_idct;
dctf->add8x8_idct_dc = add8x8_idct_dc;
dctf->sub8x16_dct_dc = sub8x16_dct_dc;
dctf->sub16x16_dct = sub16x16_dct;
dctf->add16x16_idct = add16x16_idct;
dctf->add16x16_idct_dc = add16x16_idct_dc;
dctf->sub8x8_dct8 = sub8x8_dct8;
dctf->add8x8_idct8 = add8x8_idct8;
dctf->sub16x16_dct8 = sub16x16_dct8;
dctf->add16x16_idct8 = add16x16_idct8;
dctf->dct4x4dc = dct4x4dc;
dctf->idct4x4dc = idct4x4dc;
dctf->dct2x4dc = dct2x4dc;
#if HIGH_BIT_DEPTH
#if HAVE_MMX
if( cpu&X264_CPU_MMX )
{
dctf->sub4x4_dct = x264_sub4x4_dct_mmx;
dctf->sub8x8_dct = x264_sub8x8_dct_mmx;
dctf->sub16x16_dct = x264_sub16x16_dct_mmx;
}
if( cpu&X264_CPU_SSE2 )
{
dctf->add4x4_idct = x264_add4x4_idct_sse2;
dctf->dct4x4dc = x264_dct4x4dc_sse2;
dctf->idct4x4dc = x264_idct4x4dc_sse2;
dctf->sub8x8_dct8 = x264_sub8x8_dct8_sse2;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_sse2;
dctf->add8x8_idct = x264_add8x8_idct_sse2;
dctf->add16x16_idct = x264_add16x16_idct_sse2;
dctf->add8x8_idct8 = x264_add8x8_idct8_sse2;
dctf->add16x16_idct8 = x264_add16x16_idct8_sse2;
dctf->sub8x8_dct_dc = x264_sub8x8_dct_dc_sse2;
dctf->add8x8_idct_dc = x264_add8x8_idct_dc_sse2;
dctf->sub8x16_dct_dc = x264_sub8x16_dct_dc_sse2;
dctf->add16x16_idct_dc= x264_add16x16_idct_dc_sse2;
}
if( cpu&X264_CPU_SSE4 )
{
dctf->sub8x8_dct8 = x264_sub8x8_dct8_sse4;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_sse4;
}
if( cpu&X264_CPU_AVX )
{
dctf->add4x4_idct = x264_add4x4_idct_avx;
dctf->dct4x4dc = x264_dct4x4dc_avx;
dctf->idct4x4dc = x264_idct4x4dc_avx;
dctf->sub8x8_dct8 = x264_sub8x8_dct8_avx;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_avx;
dctf->add8x8_idct = x264_add8x8_idct_avx;
dctf->add16x16_idct = x264_add16x16_idct_avx;
dctf->add8x8_idct8 = x264_add8x8_idct8_avx;
dctf->add16x16_idct8 = x264_add16x16_idct8_avx;
dctf->add8x8_idct_dc = x264_add8x8_idct_dc_avx;
dctf->sub8x16_dct_dc = x264_sub8x16_dct_dc_avx;
dctf->add16x16_idct_dc= x264_add16x16_idct_dc_avx;
}
#endif // HAVE_MMX
#else // !HIGH_BIT_DEPTH
#if HAVE_MMX
if( cpu&X264_CPU_MMX )
{
dctf->sub4x4_dct = x264_sub4x4_dct_mmx;
dctf->add4x4_idct = x264_add4x4_idct_mmx;
dctf->dct4x4dc = x264_dct4x4dc_mmx;
dctf->idct4x4dc = x264_idct4x4dc_mmx;
dctf->sub8x8_dct_dc = x264_sub8x8_dct_dc_mmx2;
#if !ARCH_X86_64
dctf->sub8x8_dct = x264_sub8x8_dct_mmx;
dctf->sub16x16_dct = x264_sub16x16_dct_mmx;
dctf->add8x8_idct = x264_add8x8_idct_mmx;
dctf->add16x16_idct = x264_add16x16_idct_mmx;
dctf->sub8x8_dct8 = x264_sub8x8_dct8_mmx;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_mmx;
dctf->add8x8_idct8 = x264_add8x8_idct8_mmx;
dctf->add16x16_idct8= x264_add16x16_idct8_mmx;
#endif
}
if( cpu&X264_CPU_MMX2 )
{
dctf->add8x8_idct_dc = x264_add8x8_idct_dc_mmx2;
dctf->add16x16_idct_dc = x264_add16x16_idct_dc_mmx2;
}
if( cpu&X264_CPU_SSE2 )
{
dctf->sub8x8_dct8 = x264_sub8x8_dct8_sse2;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_sse2;
dctf->sub8x8_dct_dc = x264_sub8x8_dct_dc_sse2;
dctf->sub8x16_dct_dc= x264_sub8x16_dct_dc_sse2;
dctf->add8x8_idct8 = x264_add8x8_idct8_sse2;
dctf->add16x16_idct8= x264_add16x16_idct8_sse2;
if( !(cpu&X264_CPU_SSE2_IS_SLOW) )
{
dctf->sub8x8_dct = x264_sub8x8_dct_sse2;
dctf->sub16x16_dct = x264_sub16x16_dct_sse2;
dctf->add8x8_idct = x264_add8x8_idct_sse2;
dctf->add16x16_idct = x264_add16x16_idct_sse2;
dctf->add16x16_idct_dc = x264_add16x16_idct_dc_sse2;
}
}
if( (cpu&X264_CPU_SSSE3) && !(cpu&X264_CPU_SSE2_IS_SLOW) )
{
dctf->sub8x16_dct_dc = x264_sub8x16_dct_dc_ssse3;
if( !(cpu&X264_CPU_SLOW_ATOM) )
{
dctf->sub4x4_dct = x264_sub4x4_dct_ssse3;
dctf->sub8x8_dct = x264_sub8x8_dct_ssse3;
dctf->sub16x16_dct = x264_sub16x16_dct_ssse3;
dctf->sub8x8_dct8 = x264_sub8x8_dct8_ssse3;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_ssse3;
if( !(cpu&X264_CPU_SLOW_PSHUFB) )
{
dctf->add8x8_idct_dc = x264_add8x8_idct_dc_ssse3;
dctf->add16x16_idct_dc = x264_add16x16_idct_dc_ssse3;
}
}
}
if( cpu&X264_CPU_SSE4 )
dctf->add4x4_idct = x264_add4x4_idct_sse4;
if( cpu&X264_CPU_AVX )
{
dctf->add4x4_idct = x264_add4x4_idct_avx;
dctf->add8x8_idct = x264_add8x8_idct_avx;
dctf->add16x16_idct = x264_add16x16_idct_avx;
dctf->add8x8_idct8 = x264_add8x8_idct8_avx;
dctf->add16x16_idct8 = x264_add16x16_idct8_avx;
dctf->add16x16_idct_dc = x264_add16x16_idct_dc_avx;
dctf->sub8x8_dct = x264_sub8x8_dct_avx;
dctf->sub16x16_dct = x264_sub16x16_dct_avx;
dctf->sub8x8_dct8 = x264_sub8x8_dct8_avx;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_avx;
}
if( cpu&X264_CPU_XOP )
{
dctf->sub8x8_dct = x264_sub8x8_dct_xop;
dctf->sub16x16_dct = x264_sub16x16_dct_xop;
}
if( cpu&X264_CPU_AVX2 )
{
dctf->add8x8_idct = x264_add8x8_idct_avx2;
dctf->add16x16_idct = x264_add16x16_idct_avx2;
dctf->sub8x8_dct = x264_sub8x8_dct_avx2;
dctf->sub16x16_dct = x264_sub16x16_dct_avx2;
#if ARCH_X86_64
dctf->sub16x16_dct8 = x264_sub16x16_dct8_avx2;
#endif
}
#endif //HAVE_MMX
#if HAVE_ALTIVEC
if( cpu&X264_CPU_ALTIVEC )
{
dctf->sub4x4_dct = x264_sub4x4_dct_altivec;
dctf->sub8x8_dct = x264_sub8x8_dct_altivec;
dctf->sub16x16_dct = x264_sub16x16_dct_altivec;
dctf->add4x4_idct = x264_add4x4_idct_altivec;
dctf->add8x8_idct = x264_add8x8_idct_altivec;
dctf->add16x16_idct = x264_add16x16_idct_altivec;
dctf->sub8x8_dct8 = x264_sub8x8_dct8_altivec;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_altivec;
dctf->add8x8_idct8 = x264_add8x8_idct8_altivec;
dctf->add16x16_idct8= x264_add16x16_idct8_altivec;
}
#endif
#if HAVE_ARMV6
if( cpu&X264_CPU_NEON )
{
dctf->sub4x4_dct = x264_sub4x4_dct_neon;
dctf->sub8x8_dct = x264_sub8x8_dct_neon;
dctf->sub16x16_dct = x264_sub16x16_dct_neon;
dctf->add8x8_idct_dc = x264_add8x8_idct_dc_neon;
dctf->add16x16_idct_dc = x264_add16x16_idct_dc_neon;
dctf->sub8x8_dct_dc = x264_sub8x8_dct_dc_neon;
dctf->dct4x4dc = x264_dct4x4dc_neon;
dctf->idct4x4dc = x264_idct4x4dc_neon;
dctf->add4x4_idct = x264_add4x4_idct_neon;
dctf->add8x8_idct = x264_add8x8_idct_neon;
dctf->add16x16_idct = x264_add16x16_idct_neon;
dctf->sub8x8_dct8 = x264_sub8x8_dct8_neon;
dctf->sub16x16_dct8 = x264_sub16x16_dct8_neon;
dctf->add8x8_idct8 = x264_add8x8_idct8_neon;
dctf->add16x16_idct8= x264_add16x16_idct8_neon;
}
#endif
#endif // HIGH_BIT_DEPTH
}
#define ZIG(i,y,x) level[i] = dct[x*8+y];
#define ZIGZAG8_FRAME\
ZIG( 0,0,0) ZIG( 1,0,1) ZIG( 2,1,0) ZIG( 3,2,0)\
ZIG( 4,1,1) ZIG( 5,0,2) ZIG( 6,0,3) ZIG( 7,1,2)\
ZIG( 8,2,1) ZIG( 9,3,0) ZIG(10,4,0) ZIG(11,3,1)\
ZIG(12,2,2) ZIG(13,1,3) ZIG(14,0,4) ZIG(15,0,5)\
ZIG(16,1,4) ZIG(17,2,3) ZIG(18,3,2) ZIG(19,4,1)\
ZIG(20,5,0) ZIG(21,6,0) ZIG(22,5,1) ZIG(23,4,2)\
ZIG(24,3,3) ZIG(25,2,4) ZIG(26,1,5) ZIG(27,0,6)\
ZIG(28,0,7) ZIG(29,1,6) ZIG(30,2,5) ZIG(31,3,4)\
ZIG(32,4,3) ZIG(33,5,2) ZIG(34,6,1) ZIG(35,7,0)\
ZIG(36,7,1) ZIG(37,6,2) ZIG(38,5,3) ZIG(39,4,4)\
ZIG(40,3,5) ZIG(41,2,6) ZIG(42,1,7) ZIG(43,2,7)\
ZIG(44,3,6) ZIG(45,4,5) ZIG(46,5,4) ZIG(47,6,3)\
ZIG(48,7,2) ZIG(49,7,3) ZIG(50,6,4) ZIG(51,5,5)\
ZIG(52,4,6) ZIG(53,3,7) ZIG(54,4,7) ZIG(55,5,6)\
ZIG(56,6,5) ZIG(57,7,4) ZIG(58,7,5) ZIG(59,6,6)\
ZIG(60,5,7) ZIG(61,6,7) ZIG(62,7,6) ZIG(63,7,7)\
#define ZIGZAG8_FIELD\
ZIG( 0,0,0) ZIG( 1,1,0) ZIG( 2,2,0) ZIG( 3,0,1)\
ZIG( 4,1,1) ZIG( 5,3,0) ZIG( 6,4,0) ZIG( 7,2,1)\
ZIG( 8,0,2) ZIG( 9,3,1) ZIG(10,5,0) ZIG(11,6,0)\
ZIG(12,7,0) ZIG(13,4,1) ZIG(14,1,2) ZIG(15,0,3)\
ZIG(16,2,2) ZIG(17,5,1) ZIG(18,6,1) ZIG(19,7,1)\
ZIG(20,3,2) ZIG(21,1,3) ZIG(22,0,4) ZIG(23,2,3)\
ZIG(24,4,2) ZIG(25,5,2) ZIG(26,6,2) ZIG(27,7,2)\
ZIG(28,3,3) ZIG(29,1,4) ZIG(30,0,5) ZIG(31,2,4)\
ZIG(32,4,3) ZIG(33,5,3) ZIG(34,6,3) ZIG(35,7,3)\
ZIG(36,3,4) ZIG(37,1,5) ZIG(38,0,6) ZIG(39,2,5)\
ZIG(40,4,4) ZIG(41,5,4) ZIG(42,6,4) ZIG(43,7,4)\
ZIG(44,3,5) ZIG(45,1,6) ZIG(46,2,6) ZIG(47,4,5)\
ZIG(48,5,5) ZIG(49,6,5) ZIG(50,7,5) ZIG(51,3,6)\
ZIG(52,0,7) ZIG(53,1,7) ZIG(54,4,6) ZIG(55,5,6)\
ZIG(56,6,6) ZIG(57,7,6) ZIG(58,2,7) ZIG(59,3,7)\
ZIG(60,4,7) ZIG(61,5,7) ZIG(62,6,7) ZIG(63,7,7)
#define ZIGZAG4_FRAME\
ZIGDC( 0,0,0) ZIG( 1,0,1) ZIG( 2,1,0) ZIG( 3,2,0)\
ZIG( 4,1,1) ZIG( 5,0,2) ZIG( 6,0,3) ZIG( 7,1,2)\
ZIG( 8,2,1) ZIG( 9,3,0) ZIG(10,3,1) ZIG(11,2,2)\
ZIG(12,1,3) ZIG(13,2,3) ZIG(14,3,2) ZIG(15,3,3)
#define ZIGZAG4_FIELD\
ZIGDC( 0,0,0) ZIG( 1,1,0) ZIG( 2,0,1) ZIG( 3,2,0)\
ZIG( 4,3,0) ZIG( 5,1,1) ZIG( 6,2,1) ZIG( 7,3,1)\
ZIG( 8,0,2) ZIG( 9,1,2) ZIG(10,2,2) ZIG(11,3,2)\
ZIG(12,0,3) ZIG(13,1,3) ZIG(14,2,3) ZIG(15,3,3)
static void zigzag_scan_8x8_frame( dctcoef level[64], dctcoef dct[64] )
{
ZIGZAG8_FRAME
}
static void zigzag_scan_8x8_field( dctcoef level[64], dctcoef dct[64] )
{
ZIGZAG8_FIELD
}
#undef ZIG
#define ZIG(i,y,x) level[i] = dct[x*4+y];
#define ZIGDC(i,y,x) ZIG(i,y,x)
static void zigzag_scan_4x4_frame( dctcoef level[16], dctcoef dct[16] )
{
ZIGZAG4_FRAME
}
static void zigzag_scan_4x4_field( dctcoef level[16], dctcoef dct[16] )
{
memcpy( level, dct, 2 * sizeof(dctcoef) );
ZIG(2,0,1) ZIG(3,2,0) ZIG(4,3,0) ZIG(5,1,1)
memcpy( level+6, dct+6, 10 * sizeof(dctcoef) );
}
#undef ZIG
#define ZIG(i,y,x) {\
int oe = x+y*FENC_STRIDE;\
int od = x+y*FDEC_STRIDE;\
level[i] = p_src[oe] - p_dst[od];\
nz |= level[i];\
}
#define COPY4x4\
CPPIXEL_X4( p_dst+0*FDEC_STRIDE, p_src+0*FENC_STRIDE );\
CPPIXEL_X4( p_dst+1*FDEC_STRIDE, p_src+1*FENC_STRIDE );\
CPPIXEL_X4( p_dst+2*FDEC_STRIDE, p_src+2*FENC_STRIDE );\
CPPIXEL_X4( p_dst+3*FDEC_STRIDE, p_src+3*FENC_STRIDE );
#define CPPIXEL_X8(dst,src) ( CPPIXEL_X4(dst,src), CPPIXEL_X4(dst+4,src+4) )
#define COPY8x8\
CPPIXEL_X8( p_dst+0*FDEC_STRIDE, p_src+0*FENC_STRIDE );\
CPPIXEL_X8( p_dst+1*FDEC_STRIDE, p_src+1*FENC_STRIDE );\
CPPIXEL_X8( p_dst+2*FDEC_STRIDE, p_src+2*FENC_STRIDE );\
CPPIXEL_X8( p_dst+3*FDEC_STRIDE, p_src+3*FENC_STRIDE );\
CPPIXEL_X8( p_dst+4*FDEC_STRIDE, p_src+4*FENC_STRIDE );\
CPPIXEL_X8( p_dst+5*FDEC_STRIDE, p_src+5*FENC_STRIDE );\
CPPIXEL_X8( p_dst+6*FDEC_STRIDE, p_src+6*FENC_STRIDE );\
CPPIXEL_X8( p_dst+7*FDEC_STRIDE, p_src+7*FENC_STRIDE );
static int zigzag_sub_4x4_frame( dctcoef level[16], const pixel *p_src, pixel *p_dst )
{
int nz = 0;
ZIGZAG4_FRAME
COPY4x4
return !!nz;
}
static int zigzag_sub_4x4_field( dctcoef level[16], const pixel *p_src, pixel *p_dst )
{
int nz = 0;
ZIGZAG4_FIELD
COPY4x4
return !!nz;
}
#undef ZIGDC
#define ZIGDC(i,y,x) {\
int oe = x+y*FENC_STRIDE;\
int od = x+y*FDEC_STRIDE;\
*dc = p_src[oe] - p_dst[od];\
level[0] = 0;\
}
static int zigzag_sub_4x4ac_frame( dctcoef level[16], const pixel *p_src, pixel *p_dst, dctcoef *dc )
{
int nz = 0;
ZIGZAG4_FRAME
COPY4x4
return !!nz;
}
static int zigzag_sub_4x4ac_field( dctcoef level[16], const pixel *p_src, pixel *p_dst, dctcoef *dc )
{
int nz = 0;
ZIGZAG4_FIELD
COPY4x4
return !!nz;
}
static int zigzag_sub_8x8_frame( dctcoef level[64], const pixel *p_src, pixel *p_dst )
{
int nz = 0;
ZIGZAG8_FRAME
COPY8x8
return !!nz;
}
static int zigzag_sub_8x8_field( dctcoef level[64], const pixel *p_src, pixel *p_dst )
{
int nz = 0;
ZIGZAG8_FIELD
COPY8x8
return !!nz;
}
#undef ZIG
#undef COPY4x4
static void zigzag_interleave_8x8_cavlc( dctcoef *dst, dctcoef *src, uint8_t *nnz )
{
for( int i = 0; i < 4; i++ )
{
int nz = 0;
for( int j = 0; j < 16; j++ )
{
nz |= src[i+j*4];
dst[i*16+j] = src[i+j*4];
}
nnz[(i&1) + (i>>1)*8] = !!nz;
}
}
void x264_zigzag_init( int cpu, x264_zigzag_function_t *pf_progressive, x264_zigzag_function_t *pf_interlaced )
{
pf_interlaced->scan_8x8 = zigzag_scan_8x8_field;
pf_progressive->scan_8x8 = zigzag_scan_8x8_frame;
pf_interlaced->scan_4x4 = zigzag_scan_4x4_field;
pf_progressive->scan_4x4 = zigzag_scan_4x4_frame;
pf_interlaced->sub_8x8 = zigzag_sub_8x8_field;
pf_progressive->sub_8x8 = zigzag_sub_8x8_frame;
pf_interlaced->sub_4x4 = zigzag_sub_4x4_field;
pf_progressive->sub_4x4 = zigzag_sub_4x4_frame;
pf_interlaced->sub_4x4ac = zigzag_sub_4x4ac_field;
pf_progressive->sub_4x4ac = zigzag_sub_4x4ac_frame;
#if HIGH_BIT_DEPTH
#if HAVE_MMX
if( cpu&X264_CPU_SSE2 )
{
pf_interlaced->scan_4x4 = x264_zigzag_scan_4x4_field_sse2;
pf_progressive->scan_4x4 = x264_zigzag_scan_4x4_frame_sse2;
pf_progressive->scan_8x8 = x264_zigzag_scan_8x8_frame_sse2;
}
if( cpu&X264_CPU_SSE4 )
pf_interlaced->scan_8x8 = x264_zigzag_scan_8x8_field_sse4;
if( cpu&X264_CPU_AVX )
pf_interlaced->scan_8x8 = x264_zigzag_scan_8x8_field_avx;
#if ARCH_X86_64
if( cpu&X264_CPU_AVX )
{
pf_progressive->scan_4x4 = x264_zigzag_scan_4x4_frame_avx;
pf_progressive->scan_8x8 = x264_zigzag_scan_8x8_frame_avx;
}
#endif // ARCH_X86_64
#endif // HAVE_MMX
#else
#if HAVE_MMX
if( cpu&X264_CPU_MMX )
pf_progressive->scan_4x4 = x264_zigzag_scan_4x4_frame_mmx;
if( cpu&X264_CPU_MMX2 )
{
pf_interlaced->scan_4x4 = x264_zigzag_scan_4x4_field_mmx2;
pf_interlaced->scan_8x8 = x264_zigzag_scan_8x8_field_mmx2;
pf_progressive->scan_8x8 = x264_zigzag_scan_8x8_frame_mmx2;
}
if( cpu&X264_CPU_SSE2_IS_FAST )
pf_progressive->scan_8x8 = x264_zigzag_scan_8x8_frame_sse2;
if( cpu&X264_CPU_SSSE3 )
{
pf_interlaced->sub_4x4 = x264_zigzag_sub_4x4_field_ssse3;
pf_progressive->sub_4x4 = x264_zigzag_sub_4x4_frame_ssse3;
pf_interlaced->sub_4x4ac = x264_zigzag_sub_4x4ac_field_ssse3;
pf_progressive->sub_4x4ac= x264_zigzag_sub_4x4ac_frame_ssse3;
pf_progressive->scan_8x8 = x264_zigzag_scan_8x8_frame_ssse3;
if( !(cpu&X264_CPU_SLOW_SHUFFLE) )
pf_progressive->scan_4x4 = x264_zigzag_scan_4x4_frame_ssse3;
}
if( cpu&X264_CPU_AVX )
{
pf_interlaced->sub_4x4 = x264_zigzag_sub_4x4_field_avx;
pf_progressive->sub_4x4 = x264_zigzag_sub_4x4_frame_avx;
#if ARCH_X86_64
pf_interlaced->sub_4x4ac = x264_zigzag_sub_4x4ac_field_avx;
pf_progressive->sub_4x4ac= x264_zigzag_sub_4x4ac_frame_avx;
#endif
pf_progressive->scan_4x4 = x264_zigzag_scan_4x4_frame_avx;
}
if( cpu&X264_CPU_XOP )
{
pf_progressive->scan_4x4 = x264_zigzag_scan_4x4_frame_xop;
pf_progressive->scan_8x8 = x264_zigzag_scan_8x8_frame_xop;
pf_interlaced->scan_8x8 = x264_zigzag_scan_8x8_field_xop;
}
#endif // HAVE_MMX
#if HAVE_ALTIVEC
if( cpu&X264_CPU_ALTIVEC )
{
pf_interlaced->scan_4x4 = x264_zigzag_scan_4x4_field_altivec;
pf_progressive->scan_4x4 = x264_zigzag_scan_4x4_frame_altivec;
}
#endif
#if HAVE_ARMV6
if( cpu&X264_CPU_NEON )
pf_progressive->scan_4x4 = x264_zigzag_scan_4x4_frame_neon;
#endif
#endif // HIGH_BIT_DEPTH
pf_interlaced->interleave_8x8_cavlc =
pf_progressive->interleave_8x8_cavlc = zigzag_interleave_8x8_cavlc;
#if HAVE_MMX
#if HIGH_BIT_DEPTH
if( cpu&X264_CPU_SSE2 )
{
pf_interlaced->interleave_8x8_cavlc =
pf_progressive->interleave_8x8_cavlc = x264_zigzag_interleave_8x8_cavlc_sse2;
}
if( cpu&X264_CPU_AVX )
{
pf_interlaced->interleave_8x8_cavlc =
pf_progressive->interleave_8x8_cavlc = x264_zigzag_interleave_8x8_cavlc_avx;
}
#else
if( cpu&X264_CPU_MMX )
{
pf_interlaced->interleave_8x8_cavlc =
pf_progressive->interleave_8x8_cavlc = x264_zigzag_interleave_8x8_cavlc_mmx;
}
if( (cpu&X264_CPU_SSE2) && !(cpu&(X264_CPU_SLOW_SHUFFLE|X264_CPU_SSE2_IS_SLOW)) )
{
pf_interlaced->interleave_8x8_cavlc =
pf_progressive->interleave_8x8_cavlc = x264_zigzag_interleave_8x8_cavlc_sse2;
}
if( cpu&X264_CPU_AVX )
{
pf_interlaced->interleave_8x8_cavlc =
pf_progressive->interleave_8x8_cavlc = x264_zigzag_interleave_8x8_cavlc_avx;
}
if( cpu&X264_CPU_AVX2 )
{
pf_interlaced->interleave_8x8_cavlc =
pf_progressive->interleave_8x8_cavlc = x264_zigzag_interleave_8x8_cavlc_avx2;
}
#endif // HIGH_BIT_DEPTH
#endif
}