322. Coin Change

You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)

Example 2:
coins = [2], amount = 3
return -1.

Note:
You may assume that you have an infinite number of each kind of coin.

思路一:回溯算法,时间复杂度为为指数级,进行剪枝处理,任然TimeOut,程序如下所示:

class Solution {
    private int minLen = Integer.MAX_VALUE;
    public int coinChange(int[] coins, int amount) {
        List<Integer> list = new LinkedList<>();
        backTracing(coins, 0, amount, list);
        return minLen == Integer.MAX_VALUE?-1:minLen;
    }
    
    public void backTracing(int[] coins, int start, int amount, List<Integer> list){
        if (start > coins.length||amount < 0){
            return;
        }
        if (amount == 0){
            minLen = Math.min(minLen, list.size());
            return;
        }
        if (list.size() >= minLen){
            return;
        }
        for (int i = start; i < coins.length; ++ i){
            list.add(coins[i]);
            backTracing(coins, i, amount - coins[i], list);
            list.remove(list.size() - 1);
        }
    }
}

思路2:

DP思路,求解的最长长度为amount,因此设置一个数组dp[amount+1],对每个长度可行的值进行一个映射,且本题只求长度,不要找到具体的解,程序如下所示:

class Solution {
    private int minLen = Integer.MAX_VALUE;
    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, -1);
        dp[0] = 0;
        for (int i = 1; i <= amount; ++ i){
            for (int val : coins){
                if (i - val >= 0&&dp[i - val] != -1){
                    dp[i] = dp[i] > 0?Math.min(dp[i], dp[i-val] + 1):dp[i-val] + 1;
                }
            }
        }
        return dp[amount];
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值