计数排序countingsort

本文介绍了一种简单的计数排序算法实现方法,并通过一个具体的示例展示了如何使用该算法对整数数组进行排序。该算法适用于数值范围较小的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <stdio.h>
void counting_sort(int *a,int *b,int k,int length){
    int c[k];
    int i;
    for(i=0;i<k;i++)
        c[i]=0;
    for(i=0;i<length;i++)
        c[a[i]]++;
    for(i=1;i<length;i++){
        c[i]+=c[i-1];
    }
    for(i=0;i<length;i++){
        b[ c[a[i]] - 1]=a[i];
        c[a[i]]--;
    }


}
int main(){
    int a[8]={2,5,3,0,2,3,0,3};
    int b[8];
    counting_sort(a,b,6,8);
    int i;
    for(i=0;i<8;i++)
        printf("%d ",b[i]);
    return 0;
}
### Python 计数排序(Counting Sort)算法实现 计数排序是一种非比较型整数排序算法,适用于数据范围较小的整数排序。该算法通过统计每个值出现的次数来进行排序。 #### 计数排序的核心思想 对于给定的一个数组 `arr` ,找到最大值 `max_val` 并创建一个长度为 `max_val + 1` 的辅助数组 `count` 。这个辅助数组用来记录原数组中各个数值出现的频次。最后再根据频次重构有序的新列表[^1]。 下面是具体的Python代码实现: ```python def counting_sort(arr): if not arr: # 处理空数组的情况 return [] max_val = max(arr) # 获取数组中的最大值 min_val = min(arr) # 获取最小值以便处理负数 offset = -min_val # 偏移量用于支持负数 m = max_val + offset + 1 # 考虑偏移后的大小 count = [0] * m # 初始化频率表 for a in arr: count[a + offset] += 1 # 统计各元素的数量 result = [] # 构建结果集 for i in range(len(count)): while count[i] > 0: # 将相同数量的i加入result result.append(i - offset) count[i] -= 1 return result # 返回已排序的结果 ``` 此版本不仅能够处理正整数还可以处理包含负数的数据集合[^2]。 为了验证上述函数的有效性,可以使用如下测试案例: ```python # 测试用例 test_cases = [ ([1,4,1,2,7,5,2], [1,1,2,2,4,5,7]), ([3,-1,2,-1,0], [-1,-1,0,2,3]) ] for case in test_cases: print(f"原始数组:{case[0]}") print(f"排序结果:{counting_sort(case[0])}") print(f"期望结果:{case[1]}\n") ``` 以上实现了对含有正整数以及含负数两种情况下计数排序的功能展示,并且保持了算法的时间复杂度为线性的特性即O(n)[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值