bzoj2212 [Poi2011]Tree Rotations

本文探讨了一种特殊的二叉树——Rotatus Informatikus,并介绍了一个算法来通过旋转操作减少树的逆序对数量。该算法利用了线段树的数据结构来高效计算逆序对数目,实现O(n log n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.elijahqi.win/archives/3052

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves’ labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An). The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar’s tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar’s tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree’s description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree’s description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2
Sample Output

1
HINT

Source

将dfs序列映射到数列上 那么显然每个点的子树是在序列上一段连续的编号 那么我每次如果交换两个子树的话显然只会影响序列内被包含的点 所以在交换我父亲节点子树的时候我子树内的逆序对是不会发生变化 所以只要按照深搜序做即可 然后每个节点维护一个权值线段树 然后每次合并的时候统计下逆序对数 然后比较下是否交换 复杂度nlog(n) 空间复杂度n*log(n) 因为我每次只有到叶子节点的时候才会往里插入所以总叶子节点是o(n)

#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
    while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
    return x*f;
}
const int N=2e5+10;
struct node{int v,left,right;}tree[N*20];
int num,n;long long ans1,ans2,ans;
inline void insert1(int &x,int l,int r,int p){
    x=++num;++tree[x].v;if (l==r) return;int mid=l+r>>1;
    if (p<=mid) insert1(tree[x].left,l,mid,p);
    else insert1(tree[x].right,mid+1,r,p);
}
inline int merge(int rt1,int rt2){
    if (!rt1||!rt2) return rt1+rt2;
    int l1=tree[rt1].left,l2=tree[rt2].left;
    int r1=tree[rt1].right,r2=tree[rt2].right;
    ans1+=(ll)tree[l1].v*tree[r2].v;ans2+=(ll)tree[l2].v*tree[r1].v;
    tree[rt1].left=merge(tree[rt1].left,tree[rt2].left);
    tree[rt1].right=merge(tree[rt1].right,tree[rt2].right);
    tree[rt1].v+=tree[rt2].v;return rt1;
}
inline int dfs(){
    int rt1=0,rt2=0;int x=read();
    if(x){insert1(rt1,1,n,x);return rt1;}
    rt1=dfs();rt2=dfs();ans1=0;ans2=0;rt1=merge(rt1,rt2);
    ans+=min(ans1,ans2);return rt1;
}
int main(){
    freopen("bzoj2212.in","r",stdin);
    n=read();dfs();printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值