RadarSLAM: 全天候大场景雷达slam

RadarSLAM是一种在各种恶劣天气条件下,如黑夜、浓雾和大雪等,仍能保持高鲁棒性和定位精度的SLAM框架。该算法通过FMCW雷达传感器提取特征点,利用SURF算法并结合运动估计和关键点一致性约束减少误匹配。局部子图构建和回环检测策略进一步优化了定位效果。实验证明,RadarSLAM在极端天气下表现出优秀的鲁棒性和实时性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RadarSLAM: 全天候大场景雷达slam

RadarSLAM: Radar based Large-Scale SLAM in ALL Weathers

项目主页:http://pro.hw.ac.uk/research/radarslam/

摘要

近年来,依靠各类传感器的slam已经得到了广泛使用。然而,slam算法在极端天气下的鲁棒性问题一直未得到解决。在本文中,作者提出了一种全天候,大场景下的激光slam框架。通过全新的特征匹配和概率点云地图实现了包括位姿估计、局部建图、回环检测以及位姿图优化一系列功能。作者在公开数据集和自己收集的数据集中进行了广泛的实验,结果表明了在各种恶劣天气条件下,如黑夜、浓雾和大雪等天气条件下。算法拥有良好的可靠性已经定位精度。

原理及主要创新点

文章的主要贡献主要有四点:

(1). 高效、可靠的特征点提取和匹配。

(2). 从雷达图像中生成概率点云可以显著降低斑点噪声。

(3). 可工作在恶劣天气条件下的图优化slam系统。

(4). 在大场景环境中进行了大量的实验,首次证明了算法可以工作在极端天气环境中(如浓雾和大雪)。

算法主体框架如下:

在这里插入图片描述

一. 特征点提取模块

作者使用FMCW(调频连续波雷达)作为主传感器,可以同时测量距离与速度,并生成雷达图像。通过SURF特征点提取算法进行关键点的提取。利用描述子构建关键点的匹配,并利用深度信息提取了两个改进以减小不正确的匹配。

(1). 引入运动估计(例如最大速度)来约束关键点在雷达局部坐标系的搜索半径。减少不正确的匹配次数同时也避免了穷举特征匹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值