""" Wrapper functions for TensorFlow layers.
Author: Charles R. Qi
Date: November 2017
"""
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, regularizers
def create_variable(name, shape, initializer, dtype=tf.float32):
return tf.Variable(
initial_value=initializer(shape, dtype=dtype),
name=name,
dtype=dtype
)
def _variable_with_weight_decay(name, shape, stddev, wd, use_xavier=True):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
use_xavier: bool, whether to use xavier initializer
Returns:
Variable Tensor
"""
if use_xavier:
initializer = tf.truncated_normal_initializer()
else:
initializer = tf.truncated_normal_initializer(stddev=stddev)
var = _variable_on_cpu(name, shape, initializer)
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def conv1d(inputs,
num_output_channels,
kernel_size,
scope,
stride=1,
padding='SAME',
data_format='NWC',
use_xavier=True,
stddev=1e-3,
weight_decay=None,
activation_fn=tf.nn.relu,
bn=False,
bn_decay=None,
is_training=None):
""" 1D convolution with non-linear operation.
Args:
inputs: 3-D tensor variable BxLxC
num_output_channels: int
kernel_size: int
scope: string
stride: int
padding: 'SAME' or 'VALID'
data_format: 'NWC' or 'NCHW'
use_xavier: bool, use xavier_initializer if true
stddev: float, stddev for truncated_normal init
weight_decay: float
activation_fn: function
bn: bool, whether to use batch norm
bn_decay: float or float tensor variable in [0,1]
is_training: bool Tensor variable
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
assert(data_format=='NWC' or data_format=='NCHW')
if data_format == 'NWC':
num_in_channels = inputs.get_shape()[-1]
elif data_format=='NCHW':
num_in_channels = inputs.get_shape()[1]
kernel_shape = [kernel_size,
num_in_channels, num_output_channels]
kernel = _variable_with_weight_decay('weights',
shape=kernel_shape,
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
outputs = tf.nn.conv1d(inputs, kernel,
stride=stride,
padding=padding,
data_format=data_format)
biases = _variable_on_cpu('biases', [num_output_channels],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases, data_format=data_format)
if bn:
outputs = batch_norm_for_conv1d(outputs, is_training,
bn_decay=bn_decay, scope='bn',
data_format=data_format)
if activation_fn is not None:
outputs = activation_fn(outputs)
return outputs
def conv2d(inputs,
num_output_channels,
kernel_size,
scope,
stride=[1, 1],
padding='SAME',
data_format='NHWC',
use_xavier=True,
stddev=1e-3,
weight_decay=None,
activation_fn=tf.nn.relu,
bn=False,
bn_decay=None,
is_training=None):
""" 2D convolution with non-linear operation.
Args:
inputs: 4-D tensor variable BxHxWxC
num_output_channels: int
kernel_size: a list of 2 ints
scope: string
stride: a list of 2 ints
padding: 'SAME' or 'VALID'
data_format: 'NHWC' or 'NCHW'
use_xavier: bool, use xavier_initializer if true
stddev: float, stddev for truncated_normal init
weight_decay: float
activation_fn: function
bn: bool, whether to use batch norm
bn_decay: float or float tensor variable in [0,1]
is_training: bool Tensor variable
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
kernel_h, kernel_w = kernel_size
assert(data_format=='NHWC' or data_format=='NCHW')
if data_format == 'NHWC':
num_in_channels = inputs.get_shape()[-1]
elif data_format=='NCHW':
num_in_channels = inputs.get_shape()[1]
kernel_shape = [kernel_h, kernel_w,
num_in_channels, num_output_channels]
kernel = _variable_with_weight_decay('weights',
shape=kernel_shape,
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
stride_h, stride_w = stride
outputs = tf.nn.conv2d(inputs, kernel,
[1, stride_h, stride_w, 1],
padding=padding,
data_format=data_format)
biases = _variable_on_cpu('biases', [num_output_channels],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases, data_format=data_format)
if bn:
outputs = batch_norm_for_conv2d(outputs, is_training,
bn_decay=bn_decay, scope='bn',
data_format=data_format)
if activation_fn is not None:
outputs = activation_fn(outputs)
return outputs
def conv2d_transpose(inputs,
num_output_channels,
kernel_size,
scope,
stride=[1, 1],
padding='SAME',
use_xavier=True,
stddev=1e-3,
weight_decay=None,
activation_fn=tf.nn.relu,
bn=False,
bn_decay=None,
is_training=None):
""" 2D convolution transpose with non-linear operation.
Args:
inputs: 4-D tensor variable BxHxWxC
num_output_channels: int
kernel_size: a list of 2 ints
scope: string
stride: a list of 2 ints
padding: 'SAME' or 'VALID'
use_xavier: bool, use xavier_initializer if true
stddev: float, stddev for truncated_normal init
weight_decay: float
activation_fn: function
bn: bool, whether to use batch norm
bn_decay: float or float tensor variable in [0,1]
is_training: bool Tensor variable
Returns:
Variable tensor
Note: conv2d(conv2d_transpose(a, num_out, ksize, stride), a.shape[-1], ksize, stride) == a
"""
with tf.variable_scope(scope) as sc:
kernel_h, kernel_w = kernel_size
num_in_channels = inputs.get_shape()[-1].value
kernel_shape = [kernel_h, kernel_w,
num_output_channels, num_in_channels] # reversed to conv2d
kernel = _variable_with_weight_decay('weights',
shape=kernel_shape,
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
stride_h, stride_w = stride
# from slim.convolution2d_transpose
def get_deconv_dim(dim_size, stride_size, kernel_size, padding):
dim_size *= stride_size
if padding == 'VALID' and dim_size is not None:
dim_size += max(kernel_size - stride_size, 0)
return dim_size
# caculate output shape
batch_size = inputs.get_shape()[0].value
height = inputs.get_shape()[1].value
width = inputs.get_shape()[2].value
out_height = get_deconv_dim(height, stride_h, kernel_h, padding)
out_width = get_deconv_dim(width, stride_w, kernel_w, padding)
output_shape = [batch_size, out_height, out_width, num_output_channels]
outputs = tf.nn.conv2d_transpose(inputs, kernel, output_shape,
[1, stride_h, stride_w, 1],
padding=padding)
biases = _variable_on_cpu('biases', [num_output_channels],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases)
if bn:
outputs = batch_norm_for_conv2d(outputs, is_training,
bn_decay=bn_decay, scope='bn')
if activation_fn is not None:
outputs = activation_fn(outputs)
return outputs
def conv3d(inputs,
num_output_channels,
kernel_size,
scope,
stride=[1, 1, 1],
padding='SAME',
use_xavier=True,
stddev=1e-3,
weight_decay=None,
activation_fn=tf.nn.relu,
bn=False,
bn_decay=None,
is_training=None):
""" 3D convolution with non-linear operation.
Args:
inputs: 5-D tensor variable BxDxHxWxC
num_output_channels: int
kernel_size: a list of 3 ints
scope: string
stride: a list of 3 ints
padding: 'SAME' or 'VALID'
use_xavier: bool, use xavier_initializer if true
stddev: float, stddev for truncated_normal init
weight_decay: float
activation_fn: function
bn: bool, whether to use batch norm
bn_decay: float or float tensor variable in [0,1]
is_training: bool Tensor variable
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
kernel_d, kernel_h, kernel_w = kernel_size
num_in_channels = inputs.get_shape()[-1].value
kernel_shape = [kernel_d, kernel_h, kernel_w,
num_in_channels, num_output_channels]
kernel = _variable_with_weight_decay('weights',
shape=kernel_shape,
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
stride_d, stride_h, stride_w = stride
outputs = tf.nn.conv3d(inputs, kernel,
[1, stride_d, stride_h, stride_w, 1],
padding=padding)
biases = _variable_on_cpu('biases', [num_output_channels],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases)
if bn:
outputs = batch_norm_for_conv3d(outputs, is_training,
bn_decay=bn_decay, scope='bn')
if activation_fn is not None:
outputs = activation_fn(outputs)
return outputs
def fully_connected(inputs,
num_outputs,
scope,
use_xavier=True,
stddev=1e-3,
weight_decay=None,
activation_fn=tf.nn.relu,
bn=False,
bn_decay=None,
is_training=None):
""" Fully connected layer with non-linear operation.
Args:
inputs: 2-D tensor BxN
num_outputs: int
Returns:
Variable tensor of size B x num_outputs.
"""
with tf.variable_scope(scope) as sc:
num_input_units = inputs.get_shape()[-1].value
weights = _variable_with_weight_decay('weights',
shape=[num_input_units, num_outputs],
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
outputs = tf.matmul(inputs, weights)
biases = _variable_on_cpu('biases', [num_outputs],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases)
if bn:
outputs = batch_norm_for_fc(outputs, is_training, bn_decay, 'bn')
if activation_fn is not None:
outputs = activation_fn(outputs)
return outputs
def max_pool2d(inputs,
kernel_size,
scope,
stride=[2, 2],
padding='VALID'):
""" 2D max pooling.
Args:
inputs: 4-D tensor BxHxWxC
kernel_size: a list of 2 ints
stride: a list of 2 ints
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
kernel_h, kernel_w = kernel_size
stride_h, stride_w = stride
outputs = tf.nn.max_pool(inputs,
ksize=[1, kernel_h, kernel_w, 1],
strides=[1, stride_h, stride_w, 1],
padding=padding,
name=sc.name)
return outputs
def avg_pool2d(inputs,
kernel_size,
scope,
stride=[2, 2],
padding='VALID'):
""" 2D avg pooling.
Args:
inputs: 4-D tensor BxHxWxC
kernel_size: a list of 2 ints
stride: a list of 2 ints
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
kernel_h, kernel_w = kernel_size
stride_h, stride_w = stride
outputs = tf.nn.avg_pool(inputs,
ksize=[1, kernel_h, kernel_w, 1],
strides=[1, stride_h, stride_w, 1],
padding=padding,
name=sc.name)
return outputs
def max_pool3d(inputs,
kernel_size,
scope,
stride=[2, 2, 2],
padding='VALID'):
""" 3D max pooling.
Args:
inputs: 5-D tensor BxDxHxWxC
kernel_size: a list of 3 ints
stride: a list of 3 ints
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
kernel_d, kernel_h, kernel_w = kernel_size
stride_d, stride_h, stride_w = stride
outputs = tf.nn.max_pool3d(inputs,
ksize=[1, kernel_d, kernel_h, kernel_w, 1],
strides=[1, stride_d, stride_h, stride_w, 1],
padding=padding,
name=sc.name)
return outputs
def avg_pool3d(inputs,
kernel_size,
scope,
stride=[2, 2, 2],
padding='VALID'):
""" 3D avg pooling.
Args:
inputs: 5-D tensor BxDxHxWxC
kernel_size: a list of 3 ints
stride: a list of 3 ints
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
kernel_d, kernel_h, kernel_w = kernel_size
stride_d, stride_h, stride_w = stride
outputs = tf.nn.avg_pool3d(inputs,
ksize=[1, kernel_d, kernel_h, kernel_w, 1],
strides=[1, stride_d, stride_h, stride_w, 1],
padding=padding,
name=sc.name)
return outputs
def batch_norm_template_unused(inputs, is_training, scope, moments_dims, bn_decay):
""" NOTE: this is older version of the util func. it is deprecated.
Batch normalization on convolutional maps and beyond...
Ref.: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow
Args:
inputs: Tensor, k-D input ... x C could be BC or BHWC or BDHWC
is_training: boolean tf.Varialbe, true indicates training phase
scope: string, variable scope
moments_dims: a list of ints, indicating dimensions for moments calculation
bn_decay: float or float tensor variable, controling moving average weight
Return:
normed: batch-normalized maps
"""
with tf.variable_scope(scope) as sc:
num_channels = inputs.get_shape()[-1].value
beta = _variable_on_cpu(name='beta',shape=[num_channels],
initializer=tf.constant_initializer(0))
gamma = _variable_on_cpu(name='gamma',shape=[num_channels],
initializer=tf.constant_initializer(1.0))
batch_mean, batch_var = tf.nn.moments(inputs, moments_dims, name='moments')
decay = bn_decay if bn_decay is not None else 0.9
ema = tf.train.ExponentialMovingAverage(decay=decay)
# Operator that maintains moving averages of variables.
# Need to set reuse=False, otherwise if reuse, will see moments_1/mean/ExponentialMovingAverage/ does not exist
# https://github.com/shekkizh/WassersteinGAN.tensorflow/issues/3
with tf.variable_scope(tf.get_variable_scope(), reuse=False):
ema_apply_op = tf.cond(is_training,
lambda: ema.apply([batch_mean, batch_var]),
lambda: tf.no_op())
# Update moving average and return current batch's avg and var.
def mean_var_with_update():
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
# ema.average returns the Variable holding the average of var.
mean, var = tf.cond(is_training,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(inputs, mean, var, beta, gamma, 1e-3)
return normed
def batch_norm_template(inputs, is_training, scope, moments_dims_unused, bn_decay, data_format='NWC'):
""" Batch normalization on convolutional maps and beyond...
Ref.: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow
Args:
inputs: Tensor, k-D input ... x C could be BC or BHWC or BDHWC
is_training: boolean tf.Varialbe, true indicates training phase
scope: string, variable scope
moments_dims: a list of ints, indicating dimensions for moments calculation
bn_decay: float or float tensor variable, controling moving average weight
data_format: 'NWC' or 'NCHW'
Return:
normed: batch-normalized maps
"""
bn_decay = bn_decay if bn_decay is not None else 0.9
return tf.layers.batch_normalization(inputs,
center=True, scale=True,
training=is_training, momentum=bn_decay,
name=scope,
)
def batch_norm_for_fc(inputs, is_training, bn_decay, scope):
""" Batch normalization on FC data.
Args:
inputs: Tensor, 2D BxC input
is_training: boolean tf.Varialbe, true indicates training phase
bn_decay: float or float tensor variable, controling moving average weight
scope: string, variable scope
Return:
normed: batch-normalized maps
"""
return batch_norm_template(inputs, is_training, scope, [0,], bn_decay)
def batch_norm_for_conv1d(inputs, is_training, bn_decay, scope, data_format):
""" Batch normalization on 1D convolutional maps.
Args:
inputs: Tensor, 3D BLC input maps
is_training: boolean tf.Varialbe, true indicates training phase
bn_decay: float or float tensor variable, controling moving average weight
scope: string, variable scope
data_format: 'NWC' or 'NCHW'
Return:
normed: batch-normalized maps
"""
return batch_norm_template(inputs, is_training, scope, [0,1], bn_decay, data_format)
def batch_norm_for_conv2d(inputs, is_training, bn_decay, scope, data_format):
""" Batch normalization on 2D convolutional maps.
Args:
inputs: Tensor, 4D BHWC input maps
is_training: boolean tf.Varialbe, true indicates training phase
bn_decay: float or float tensor variable, controling moving average weight
scope: string, variable scope
data_format: 'NHWC' or 'NCHW'
Return:
normed: batch-normalized maps
"""
return batch_norm_template(inputs, is_training, scope, [0,1,2], bn_decay, data_format)
def batch_norm_for_conv3d(inputs, is_training, bn_decay, scope):
""" Batch normalization on 3D convolutional maps.
Args:
inputs: Tensor, 5D BDHWC input maps
is_training: boolean tf.Varialbe, true indicates training phase
bn_decay: float or float tensor variable, controling moving average weight
scope: string, variable scope
Return:
normed: batch-normalized maps
"""
return batch_norm_template(inputs, is_training, scope, [0,1,2,3], bn_decay)
def dropout(inputs,
is_training,
scope,
keep_prob=0.5,
noise_shape=None):
""" Dropout layer.
Args:
inputs: tensor
is_training: boolean tf.Variable
scope: string
keep_prob: float in [0,1]
noise_shape: list of ints
Returns:
tensor variable
"""
with tf.variable_scope(scope) as sc:
outputs = tf.cond(is_training,
lambda: tf.nn.dropout(inputs, keep_prob, noise_shape),
lambda: inputs)
return outputs
最新发布