It's based on PointNet but the important thing is the N-tuple loss, which is a many-to-many loss. The basic idea is still the reproject error sum. So the authors call them point pair features (PPF). This gives a fast representation of objects for 3D reconstruction. Minors thing such as CGF, 3D Match are standard in the community.
PPFNet: Global Context Aware Local Features for Robust 3D Point Matching 阅读
最新推荐文章于 2024-09-01 14:04:55 发布
本文介绍了一种基于PointNet的3D重建方法,重点在于N-tuple loss的应用,这是一种许多到许多的损失函数。文章提出了点对点特征(PPF),能够快速表示三维对象,为3D重建提供高效解决方案。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
Stable-Diffusion-3.5
图片生成
Stable-Diffusion
Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率
1635

被折叠的 条评论
为什么被折叠?



