How far away ?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5855 Accepted Submission(s): 2196
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
2 2
1 2 100
1 2
2 1
Sample Output
10
25
100
100
Source
ECJTU 2009 Spring Contest
LCA模板题。。。直接上模板。。
LCA离线模板
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=40010;
const int MAXE=410;
struct EDGE
{
int v,next;
int val;
}edge[MAXN<<1];
struct QUET
{
int v,next;
int num;
}q[MAXE];
int fa[MAXN];
int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
}
int head1[MAXN],head2[MAXN],n,m,lca[MAXE],dist[MAXN];
int sz;
bool vis[MAXN];
void init()
{
memset(head1,-1,sizeof(head1));
memset(head2,-1,sizeof(head2));
memset(vis,0,sizeof(vis));
memset(dist,0,sizeof(dist));
sz=0;
}
void add_edge(int u,int v,int val)
{
edge[sz].v=v;
edge[sz].val=val;
edge[sz].next=head1[u];
head1[u]=sz++;
}
void add_q(int u,int v,int i)
{
q[sz].v=v;
q[sz].num=i;
q[sz].next=head2[u];
head2[u]=sz++;
}
void tarjan(int u)
{
fa[u]=u;
vis[u]=1;
for(int i=head2[u];i!=-1;i=q[i].next)
{
int v=q[i].v;
if(vis[v])
{
lca[q[i].num]=find(v);
}
}
for(int i=head1[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(!vis[v])
{
dist[v]=dist[u]+edge[i].val;
tarjan(v);
fa[v]=u;
}
}
}
int anss[MAXE],anst[MAXE];
int main()
{
int t,i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
int u,v,c;
init();
for(i=1;i<=n-1;i++)
{
scanf("%d%d%d",&u,&v,&c);
add_edge(u,v,c);
add_edge(v,u,c);
}
sz=0;
for(i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add_q(u,v,i);
add_q(v,u,i);
anss[i]=u;
anst[i]=v;
}
tarjan(1);
for(i=1;i<=m;i++)
{
printf("%d\n",dist[anss[i]]+dist[anst[i]]-2*dist[lca[i]]);
}
}
}LCA在线模板
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN=40010;
struct EDGE
{
int v,next;
int dis;
}edge[MAXN<<1];
int dep[MAXN<<1],rank[MAXN],num,set[MAXN<<1],dist[MAXN];
bool vis[MAXN];
int head[MAXN],size;
int Min(int x,int y)
{
return dep[x]<dep[y]?x:y;
}
void init()
{
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
size=0;
}
void add_edge(int u,int v,int dis)
{
edge[size].v=v;
edge[size].dis=dis;
edge[size].next=head[u];
head[u]=size++;
}
void dfs(int u,int deep)
{
vis[u]=1;
rank[u]=num;
set[num]=u;
dep[num++]=deep;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(vis[v])
continue;
dist[v]=dist[u]+edge[i].dis;
dfs(v,deep+1);
set[num]=u;
dep[num++]=deep;
}
}
int dp[MAXN<<1][21];
void RMQ_init()
{
int i,j;
for(i=0;i<num;i++)
dp[i][0]=i;
for(j=1;(1<<j)<num;j++)
{
for(i=0;i+(1<<j)<num;i++)
{
dp[i][j]=Min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
}
}
int RMQ(int l,int r)
{
if(r<l)
swap(l,r);
int k=(int)log(r-l+1.0)/log(2.0);
return Min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int LCA(int l,int r)
{
if(l>r)
swap(l,r);
return set[RMQ(l,r)];
}
int main()
{
int t,n,m,i;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
int u,v,d;
for(i=1;i<n;i++)
{
scanf("%d%d%d",&u,&v,&d);
add_edge(u,v,d);
add_edge(v,u,d);
}
num=0;
dist[1]=0;
dfs(1,1);
RMQ_init();
while(m--)
{
scanf("%d%d",&u,&v);
printf("%d\n",dist[u]+dist[v]-2*dist[LCA(rank[u],rank[v])]);
}
}
return 0;
}
本文提供了两种LCA算法的实现模板,一种适用于离线查询,另一种适用于在线查询。这两种模板均可用于解决特定类型的路径查找问题,如求解两点间的最短距离。
431

被折叠的 条评论
为什么被折叠?



