hdu 2586(最近公共祖先LCA)

本文详细阐述了如何运用Tarjan的思想解决最近公共祖先问题,通过深搜树和并查集优化,实现时间复杂度降低至O(n+q)。文中包括一般步骤、核心算法解释以及具体应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586

思路:在求解最近公共祖先的问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,非常好的处理技巧就是在回溯到结点u的时候,u的子树已经遍历, 这时候才把u结点放入合并集合中,这样u结点和所有u的子树中的结点的最近公共祖先就是u了,u和还未遍历的所有u的兄弟结点及子树中的最近公共祖先就是 u的父亲结点。以此类推。这样我们在对树深度遍历的时候就很自然的将树中的结点分成若干的集合,两个集合中的所属不同集合的任意一对顶点的公共祖先都是 相同的,也就是说这两个集合的最近公共最先只有一个。对于每个集合而言可以用并查集来优化,时间复杂度就大大降低了,为O(n + q),n为总结点数,q为询问结点对数。

一般步骤:

//parent为并查集,FIND为并查集的查找操作
//QUERY为询问结点对集合
//TREE为基图有根树
Tarjan(u)
visit[u] =true
for each (u, v) in QUERY
if visit[v]
ans(u, v) = FIND(v)
for each (u, v) in TREE
if!visit[v]
Tarjan(v)
parent[v] =
u

对于本道题的做法就是用dist数组记录任意节点到根节点的距离,然后最终的答案就是dist[u,v]=dist[u]+dist[v]-2*dist[LCA(u,v)]。
http://paste.ubuntu.com/5957310/


### HDU 1159 最长公共子序列 (LCS) 解题思路 #### 动态规划状态定义 对于两个字符串 `X` 和 `Y`,长度分别为 `n` 和 `m`。设 `dp[i][j]` 表示 `X[0...i-1]` 和 `Y[0...j-1]` 的最长公共子序列的长度。 当比较到第 `i` 个字符和第 `j` 个字符时: - 如果 `X[i-1]==Y[j-1]`,那么这两个字符可以加入之前的 LCS 中,则有 `dp[i][j]=dp[i-1][j-1]+1`[^3]。 - 否则,如果 `X[i-1]!=Y[j-1]`,那么需要考虑两种情况中的最大值:即舍弃 `X[i-1]` 或者舍弃 `Y[j-1]`,因此取两者较大者作为新的 LCS 长度,即 `dp[i][j]=max(dp[i-1][j], dp[i][j-1])`。 时间复杂度为 O(n*m),其中 n 是第一个字符串的长度而 m 是第二个字符串的长度。 #### 实现代码 以下是 Python 版本的具体实现方式: ```python def lcs_length(X, Y): # 初始化二维数组用于存储中间结果 m = len(X) n = len(Y) # 创建(m+1)x(n+1)大小的表格来保存子问题的结果 dp = [[0]*(n+1) for _ in range(m+1)] # 填充表项 for i in range(1, m+1): for j in range(1, n+1): if X[i-1] == Y[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[m][n] # 测试数据输入部分可以根据具体题目调整 if __name__ == "__main__": while True: try: a = input().strip() b = input().strip() result = lcs_length(a,b) print(result) except EOFError: break ``` 此程序会读入多组测试案例直到遇到文件结束符(EOF)。每组案例由两行组成,分别代表要计算其 LCS 的两个字符串。最后输出的是它们之间最长公共子序列的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值