| Time Limit: 5000MS | Memory Limit: 131072K | |
| Total Submissions: 57061 | Accepted: 17322 | |
| Case Time Limit: 2000MS | ||
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1,
A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa,
Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... ,
Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
线段树区间修改。。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX=100010;
struct seg
{
int l,r;
__int64 sum,mark; //两个附加信息,一个表示和,一个表示增加了多少
}tree[MAX*3];
int num[MAX];
void build(int l,int r,int k) //建立线段树
{
tree[k].l=l;
tree[k].r=r;
tree[k].mark=0;
if(l==r)
{
tree[k].sum=num[l];
return;
}
int mid=(l+r)>>1;
build(l,mid,2*k);
build(mid+1,r,2*k+1);
tree[k].sum=tree[2*k].sum+tree[2*k+1].sum;
}
void insert(int l,int r,int k,int val)
{
if(tree[k].l==l&&tree[k].r==r) //如果节点的区间和要增加的区间完全重合,增加节点的mark
{
tree[k].mark+=val;
return;
}
tree[k].sum+=val*(r-l+1); //不重合,这个值肯定要往下延伸,为了保证不超时,我们只需把这个区间的值加上增加的值,
//此时这个节点的mark没有变化
int mid=(tree[k].l+tree[k].r)>>1;
if(mid>=r)
insert(l,r,2*k,val);
else if(mid<l)
insert(l,r,2*k+1,val);
else
{
insert(l,mid,2*k,val);
insert(mid+1,r,2*k+1,val);
}
}
__int64 query(int l,int r,int k)
{
if(tree[k].l==l&&tree[k].r==r)
return tree[k].sum+(r-l+1)*tree[k].mark;
if(tree[k].mark!=0) //如果这个节点的mark不为0,这个节点的子节点肯定还没有mark,所以拓展到后面的子节点
{
tree[2*k].mark+=tree[k].mark;
tree[2*k+1].mark+=tree[k].mark;
tree[k].sum+=(tree[k].r-tree[k].l+1)*tree[k].mark;
tree[k].mark=0;
}
int mid=(tree[k].l+tree[k].r)>>1;
if(mid>=r)
return query(l,r,2*k);
else if(mid<l)
return query(l,r,2*k+1);
else
return query(l,mid,2*k)+query(mid+1,r,2*k+1);
}
int main()
{
int n,m,i,x,y,a;
char s[2];
//freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&m)==2)
{
for(i=1;i<=n;i++)
scanf("%d",&num[i]);
build(1,n,1);
while(m--)
{
scanf("%s",s);
if(s[0]=='Q')
{
scanf("%d%d",&x,&y);
__int64 ans=query(x,y,1);
printf("%I64d\n",ans);
}
else
{
scanf("%d%d%d",&x,&y,&a);
insert(x,y,1,a);
}
}
}
return 0;
}
本文介绍了一个涉及整数操作的问题,通过使用线段树数据结构来高效处理区间加法及查询操作。该方法能够快速响应大量查询,适用于解决算法竞赛中的区间更新与求和问题。
425

被折叠的 条评论
为什么被折叠?



