
机器学习实战
文章平均质量分 78
Edwards_June
Just For My Interest
展开
-
使用Apriori进行关联分析
源码有问题,贴出修改后可运行代码:def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def createC1(dataSet): C1 = [] for transaction in dataSet: for item in transaction:原创 2017-02-20 15:42:56 · 941 阅读 · 0 评论 -
决策树实现
from math import log import operator # 计算数据集的熵 def calsShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel = featVec[-1]原创 2017-06-10 22:14:17 · 574 阅读 · 0 评论 -
ML逻辑回归实现
代码链接: from numpy import * def loadDataSet(): dataMat = [] labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataM原创 2017-06-10 22:06:13 · 475 阅读 · 0 评论 -
机器学习Kmeans实现
代码链接: from numpy import * def loadDataSet(fileName): dataMat = [] fr = open(fileName) m = len(fr.readline().split('\t')) for line in fr.readlines(): curLine = line.strip(原创 2017-06-10 22:05:50 · 516 阅读 · 0 评论 -
机器学习PCA实现
代码链接: from numpy import * def loadDataSet(fileName, delim='\t'): fr = open(fileName) stringArr = [line.strip().split(delim) for line in fr.readlines()] datArr = [] for line in s原创 2017-05-30 22:03:47 · 523 阅读 · 0 评论 -
机器学习线性回归实现
代码链接: from numpy import * def loadDataSet(fileName): numFeat = len(open(fileName).readline().split('\t')) - 1 dataMat = [] labelMat = [] fr = open(fileName) for line in fr.r原创 2017-05-30 22:02:15 · 559 阅读 · 0 评论 -
基于SVM手写数字识别
代码链接:http://download.youkuaiyun.com/detail/edwards_june/9856050 from numpy import * def loadDataSet(fileName): dataMat = [] labelMat = [] fr = open(fileName) for line in fr.readlines(原创 2017-05-30 21:54:25 · 2987 阅读 · 1 评论 -
机器学习实现bayes
代码链接:http://download.youkuaiyun.com/detail/edwards_june/9856048 from numpy import * # 词表到向量的转换函数 def loadDataSet(): postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],原创 2017-05-30 21:52:03 · 475 阅读 · 0 评论 -
机器学习adaboost实现
学习《机器学习实战》一书时写的代码: from numpy import * def loadSimpData(): datMat = matrix([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.],原创 2017-05-30 21:29:57 · 629 阅读 · 0 评论 -
KNN实现
from array import array from os import listdir from numpy import * import operator def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','原创 2017-06-10 22:08:14 · 589 阅读 · 0 评论