<题目重现>CodeForces - 913C
A New Year party is not a New Year party without lemonade! As usual, you are expecting a lot of guests, and buying lemonade has already become a pleasant necessity.
Your favorite store sells lemonade in bottles of n different volumes at different costs. A single bottle of type i has volume 2i - 1 liters and costs ci roubles. The number of bottles of each type in the store can be considered infinite.
You want to buy at least L liters of lemonade. How many roubles do you have to spend?
Input
The first line contains two integers n and L (1 ≤ n ≤ 30; 1 ≤ L ≤ 109) — the number of types of bottles in the store and the required amount of lemonade in liters, respectively.
The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 109) — the costs of bottles of different types.
Output
Output a single integer — the smallest number of roubles you have to pay in order to buy at least L liters of lemonade.
Example
4 12
20 30 70 90
150
4 3
10000 1000 100 10
10
4 3
10 100 1000 10000
30
5 787787787
123456789 234567890 345678901 456789012 987654321
44981600785557577
Note
In the first example you should buy one 8-liter bottle for 90 roubles and two 2-liter bottles for 30 roubles each. In total you'll get 12 liters of lemonade for just 150 roubles.
In the second example, even though you need only 3 liters, it's cheaper to buy a single 8-liter bottle for 10 roubles.
In the third example it's best to buy three 1-liter bottles for 10 roubles each, getting three liters for 30 roubles.
<解题思路>
<关键操作:输入处理-找单价最优>
对输入的元素进行筛选与覆盖,若后面的单价优与当前的元素就将其覆盖,例如:1体积的物体价值20,输入2时的价值为50,很明显第二个单价为25>20,我们既然要价格最低,2个空间选50的不如选2个1空间20的。
<各变量的解释>
f:当前物品所占用的空间;
k:使用当前物体将所剩余的空间填满“可能”需要的空间(可能少1,可能正好);
t:使用k个当前物体放入背包后背包还剩余的空间;
Ans:当前状态背包填满或移除所放入的物品的总价值(多或正好);
Sum:当前状态背包中放入的物品的总价值(只少不多);
!有人会说ans和sum万一ans永远多,sum永远少,最后肯定取不到正确值,NO,不要忘记有一个物品的空间占用是1,最终必将其正好填满。
<AC代码>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
int n;
ll m;
ll ans=LONG_LONG_MAX;
int a[35];
int main(){
cin>>n>>m;
cin>>a[0];
for(int i=1;i<n;i++){
cin>>a[i];
a[i]=min(2*a[i-1],a[i]);//筛选最优
}
ll sum=0;
ll t=m;
for(int i=n-1;i>=0;i--){
ll f=pow(2,i);
ll k=t/f;
t-=k*f;
ans=min(sum+(k+1)*a[i],ans);
sum+=k*a[i];
}
ans=min(ans,sum);
cout<<ans<<endl;
return 0;
}
<测试状态>(根据题目第一组样例)
<提交结果>