二叉树的三序遍历-非递归实现

本文详细介绍了二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历。通过一个具体的例子,展示了如何使用递归和栈实现这些遍历方法,并提供了完整的C++代码实现。文章适合对数据结构和算法感兴趣的读者。

数据测试题源:Aizu - ALDS1_7_C

Tree Walk

Binary trees are defined recursively. A binary tree T is a structure defined on a finite set of nodes that either

  • contains no nodes, or
  • is composed of three disjoint sets of nodes:
    - a root node.
    - a binary tree called its left subtree.
    - a binary tree called its right subtree.

Your task is to write a program which perform tree walks (systematically traverse all nodes in a tree) based on the following algorithms:

  1. Print the root, the left subtree and right subtree (preorder).
  2. Print the left subtree, the root and right subtree (inorder).
  3. Print the left subtree, right subtree and the root (postorder).

Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n linen, the information of each node is given in the following format:

id left right

id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1

Output

In the 1st line, print "Preorder", and in the 2nd line print a list of node IDs obtained by the preorder tree walk.

In the 3rd line, print "Inorder", and in the 4th line print a list of node IDs obtained by the inorder tree walk.

In the 5th line, print "Postorder", and in the 6th line print a list of node IDs obtained by the postorder tree walk.

Print a space character before each node ID.

Constraints

  • 1 ≤ n ≤ 25

Sample Input 1

9
0 1 4
1 2 3
2 -1 -1
3 -1 -1
4 5 8
5 6 7
6 -1 -1
7 -1 -1
8 -1 -1

Sample Output 1

Preorder
 0 1 2 3 4 5 6 7 8
Inorder
 2 1 3 0 6 5 7 4 8
Postorder
 2 3 1 6 7 5 8 4 0

Code

#include <bits/stdc++.h>
#define MAX 26
using namespace std;

struct BiNode { int l, r; } bt[MAX];

void visit(int node) {
    cout << " " << node ;
}

void PreOrder(int root)
{
    int p = root;
    if (p != -1) {
        stack<int> s;
        s.push(p);
        while (!s.empty()) {
            p = s.top();
            s.pop();
            visit(p);
            if (bt[p].r != -1)
                s.push(bt[p].r);
            if (bt[p].l != -1)
                s.push(bt[p].l);
        }
    }
}

void InOrder(int root)
{
    int p = root;
    stack<int> s;
    while (p != -1 || !s.empty()) {
        if (p != -1) {
            s.push(p);
            p = bt[p].l;
        }
        else {
            p = s.top();
            s.pop();
            visit(p);
            p = bt[p].r;
        }
    }
}

void PostOrder(int root)
{
    int p = root;
    if (p != -1) {
        stack<int> s1, s2;
        s2.push(p);
        while (!s2.empty()) {
            p = s2.top();
            s2.pop();
            s1.push(p);
            if (bt[p].l != -1)
                s2.push(bt[p].l);
            if (bt[p].r != -1)
                s2.push(bt[p].r);
        }
        while (!s1.empty()) {
            visit(s1.top());
            s1.pop();
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    int n, rt, l, r;
    bool notRoot[MAX];
    memset(notRoot, false, sizeof(notRoot));
    cin >> n;
    for (int i = 0; i < n; i++)
        bt[i].l = bt[i].r = -1;
    for (int i = 0; i < n; i++) {
        cin >> rt >> l >> r;
        bt[rt].l = l;
        bt[rt].r = r;
        notRoot[l] = notRoot[r] = true;
    }
    for (int i = 0; i < n; i++) {
        if (!notRoot[i]) {
            rt = i;
            break;
        }
    }
    cout << "Preorder" << endl;
    PreOrder(rt); cout << endl;
    cout << "Inorder" << endl;
    InOrder(rt); cout << endl;
    cout << "Postorder" << endl;
    PostOrder(rt); cout << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水能zai舟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值