13、反馈控制:LQG、模态控制与稳定性准则

反馈控制:LQG、模态控制与稳定性准则

在反馈控制领域,有多种重要的控制方法和稳定性判断准则,下面将详细介绍线性二次高斯(LQG)问题、模态控制以及稳定性准则。

线性二次高斯(LQG)问题

LQG问题的核心是在存在过程噪声和测量噪声的情况下,找到一个最优控制,以最小化性能函数。

问题描述

首先,简化输出方程,去除馈通项 $D$ ,得到状态空间方程:
- $\dot{x}(t) = Ax(t) + Bu(t)$
- $y(t) = Cx(t)$

考虑过程噪声 $w(t)$ 和测量噪声 $v(t)$ 后,方程改写为:
- $\dot{x}(t) = Ax(t) + Bu(t) + T w(t)$
- $y(t) = Cx(t) + v(t)$

假设噪声源是不相关的、零均值的高斯白噪声随机向量,其相关矩阵定义如下:
- $E{v(t)v^T(t)} = R$
- $E{w(t)w^T(t)} = Q$
- $E{w(t)v^T(t)} = N$

LQG问题的目标是找到一个最优控制,最小化性能函数 $J$ :
$J = \lim_{t \to \infty} E{x^T(t) Qx(t) + u^T(t)Ru(t)}$

根据分离原理,LQG问题的解可以通过独立求解最优调节器问题和最优估计问题得到。

求解步骤
  1. 最优调节器问题 :根据卡尔曼滤波理论,要最小化 $\lim_{t \to \infty} E{[x(t)
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值