柔性电子dip-coating: Resistive pressure sensor for high-sensitivity e-skin based on porous

本文介绍了一种通过dip-coating技术在多孔聚氨酯海绵上涂覆炭黑CB、MWCNTs及硅橡胶SR纳米复合材料,制备具有三维多孔结构的导电海绵,用于柔性传感器的制造。传感器利用压阻、电容和压电原理工作,适用于多种柔性基底材料。实验详细描述了材料选择、制备流程及表征方法。

sponge dip-coated CB/MWCNTs/SR conductive composites

在多空聚氨酯(PU)海绵上逐层dip-coating 炭黑CB,MWCNTs,硅橡胶纳米复合材料SR

常用的柔性基底:polydimethylsiloxane(PDMS) 聚二甲硅氧烷,硅橡胶silicon rubber(SR),
聚酰亚胺polyimide (PI),热塑性聚氨酯 thermoplastic polyurethane TPU, 纤维fabric 和聚氨酯海绵 polyurethane PU sponge。【10,11】

基于压阻,电容和压电pizeoresistivity, capacitance, and piezoelectricity【3】原理制造柔性传感器。

具有3维多孔微结构的导电海棉 ,
有几种制造方法:

  • reduced graphene oxide(rGO)【17】
  • CVD 化学气相沉积【18,19】
  • 辅助模板集成策略template-assisted assembly strategy【20】
  • physical foaming technology【21】
  • 3Dprinting process【22】
  • dip-coating 【23】
  • EPD 电泳沉积
    CVD成长方法:在精确控制的反应气体混合流下在Ni泡沫上生长石墨烯网络,接下来刻蚀金属骨架获得石墨烯泡沫,这种方法性对来说比较复杂,不容易操作,特别对于刻蚀过程。相对来说,dip-coating技术比较简单。

实验

材料
  • 商用PU 密度~0.0386g/cm30.0386g/cm^30.0386g/cm3 <-- 3M company
  • MWCNTs 粉末 <-- Chengdu Organic Chemicals Co., Ltd, 平均长度为20um,直径为5nm
  • Carbon black CB <-- SPC Chemical Company (Sweden)
  • Silicon rubber (SR, GD401) <–Zhonghao Chenguang Co., Ltd (Zigong, China)
  • polydimethylsiloxane (PDMS, Sylgard® 184) <-- Dow Corning
  • YC-02有机硅导电银胶粘剂 <-- Nanjing Xilite Adhesive Co., Ltd (Nanjing)
  • 半透性薄膜 <-- Smith&Nephew Medical Limited 厚度~50um
  • 溶剂油(Solvent naphtha) <–Henan Tianfu Chemical Co., Ltd
    所有材料买后即用
传感器制造

在这里插入图片描述

制作示意图如Figure 1,

  • PU 海绵在去离子水中清洗几次,基础多余的去离子水,在真空干燥炉【DZF-6021, Shanghai Suopu Instrument Co., Ltd, Shanghai】中80摄氏度下干燥1h,接下来,剪成 10×10mm210 \times 10 mm^210×10mm2的样本,~5mm厚
  • 准备CB/MWCNTs 悬浮溶液,CB和MWCNTs粉末按照质量比2:3混合,分散到溶剂油(solvent naphtha)[比如0.3g, 50ml],接下来分别超声处理1h,磁搅拌1h。
  • 接下来将室温硫化(RTV)的硅橡胶(例如0.2g)放入CB/MWCNTs的悬浮液中,并用磁棒搅拌1h,获得CB/MWCNTs/SR混合物溶液
  • 将PU样本放入溶液中,挤压几次确保溶液完全被海绵吸收,从溶液中取出,在正空干燥炉中,100摄氏度下干燥2h
  • 此过程可以操作几次来获得均匀坚固的覆盖效果。获得PU导电海绵
  • 将YC-02有机硅导电银胶粘剂作为柔性电极粘贴在导电海绵的上下表面
  • 按照pre-polymer 和curing agent (固化剂) 10:1的比列混合PDMS, 磁搅拌10min,脱气(degassed) 30min。PDMS薄膜~50um,覆盖在电极上作为覆盖层。

最终的效果图:
在这里插入图片描述

表征:

The microstructures of the pristine polyurethane sponge and polyurethane sponge coated with CB/MWCNTs/
SR composite were characterized by field emission scanning electron microscopy (SU8020, Hitachi). X-ray
diffraction (XRD) patterns (using aD/MAX2500 V, Rigaku) were collected to characterize the degree of
nanocomposites. The current-voltage (I-V ) curves of the piezoresistive strain sensor under different pressure
were obtained by using Keithley 4200. Mechanical compressional tests were performed with a universal testing
machine (LS-WD-100, Shenzhen Lisen electrical technology Co., Ltd). The relative resistance under different
pressure were obtained by aDCresistance meter (TH2515, Changzhou Tonghui electronics Co., Ltd). Dynamic
response time of the device was performed by USB6211DAQ(NI) and viewed via LabVIEW system.

<think> Hmm, the user is reporting that a voltage source block is short-circuited in their Simulink model. This is a common modeling mistake that can cause simulation errors. Looking at the context, the user has been working on complex power system simulations involving high-voltage cables and partial discharge detection. They likely encountered this while building their 10kV cable model. The short-circuit error typically happens when: - A voltage source is directly connected to ground without any series impedance - Multiple voltage sources are connected in parallel - The source is connected to an ideal short circuit component I should explain the technical solution clearly since the user is clearly an electrical engineering professional based on their previous detailed modeling questions. The response needs to: 1. Immediately identify the core problem 2. Provide specific diagnostic steps 3. Offer practical solutions they can implement 4. Maintain the required format with follow-up questions The user seems focused and technical - no signs of frustration in the query, just a concise problem statement. They'll want direct, actionable solutions rather than theoretical explanations. The follow-up questions should address related modeling pitfalls since this is likely part of their larger cable PD detection project. Questions about measurement techniques and simulation diagnostics would be most relevant. </think> 在Simulink中解决电压源短路问题需遵循以下步骤: ### 故障分析与解决方案 1. **短路原因诊断**: - 电压源直接连接接地端(无串联阻抗) - 多个电压源并联未加隔离 - 负载阻抗设置为0Ω或接近零值 2. **核心修复方法**: ```matlab // 正确配置示例(AC Voltage Source参数): Voltage source → [Series RLC Branch] → [Load] │ [Ground] ``` - **必须添加串联阻抗**: - 最小电阻值:`1e-3 Ω` (避免数值计算错误) - 推荐电感值:`1e-6 H` (抑制di/dt) 3. **模块参数设置**: | 模块类型 | 关键参数 | 推荐值 | |------------------|---------------------------|----------------| | Series RLC Branch| Resistance (电阻) | 0.1 Ω | | | Inductance (电感) | 10 μH | | | Capacitance (电容) | inf (断开) | | Voltage Source | Internal resistance (内阻)| 1 mΩ | | Load | Resistive load (阻性负载) | ≥1 kΩ | 4. **连接验证流程**: ```mermaid graph LR A[电压源+] --> B[串联RLC] B --> C[负载+] C --> D[电压源-] D --> E[Ground] ``` ### 错误排查清单 1. 检查所有接地连接点是否仅有一个电气参考点 2. 确保无闭环短路路径(使用`Simulink > Diagnostics > Connectivity`检查) 3. 功率器件(IGBT/MOSFET)需添加缓冲电路: ```matlab Snubber resistance = 1e3 Ω Snubber capacitance = 0.1 μF ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值