POJ 1523 SPF 求割点及对应的连通分量数

本文介绍了一种用于检测网络中单点故障(SPF)的算法。该算法通过深度优先搜索确定网络连接,并找出那些一旦失效将导致网络部分区域无法相互通信的关键节点。文中提供了示例输入输出及实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible. 

Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate. 
Input
The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.
Output
For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist. 

The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.
Sample Input
1 2
5 4
3 1
3 2
3 4
3 5
0

1 2
2 3
3 4
4 5
5 1
0

1 2
2 3
3 4
4 6
6 3
2 5
5 1
0

0
Sample Output
Network #1
  SPF node 3 leaves 2 subnets

Network #2
  No SPF nodes

Network #3
  SPF node 2 leaves 2 subnets
  SPF node 3 leaves 2 subnets

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<stack>
#include<vector>
#define nn 1001
#define mm 10001
#define inff 0x3fffffff
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
int n,m,dfn[nn],low[nn],p[nn],num,df,vis[nn],cnt,fa[nn],ll,ans,pp[nn],kk;
stack<int>s;
struct node
{
    int en,next;
}e[mm];
int init()
{
    memset(p,-1,sizeof(p));
    num=0;
    n=0;
}
int add(int st,int en)
{
    e[num].en=en;
    e[num].next=p[st];
    p[st]=num++;
}
int dfs(int u)
{
    int child=0;
    dfn[u]=low[u]=++df;
    int w;
    for(int i=p[u];i+1;i=e[i].next)
    {
        w=e[i].en;
        if(dfn[w]==-1)
        {
            child++;
            fa[w]=u;
            dfs(w);
            low[u]=min(low[u],low[w]);
            if(fa[u]==-1&&child>1)
            {
                if(pp[u]==0)
                {
                    ans++;
                    pp[u]=1;
                }
            }
            if(fa[u]!=-1&&low[w]>=dfn[u])
            {
                if(pp[u]==0)
                {
                    ans++;
                    pp[u]=1;
                }
            }
        }
        else if(w!=fa[u])
            low[u]=min(low[u],dfn[w]);

    }
}
int rr(int u)
{
    vis[u]=1;
    for(int i=p[u];i+1;i=e[i].next)
    {
        int w=e[i].en;
        if(!vis[w])
        {
            vis[w]=1;
            rr(w);
        }
    }
}
int rrr(int u)//求对应的连通分量数
{
    memset(vis,0,sizeof(vis));
    vis[u]=1;
    int son=0;
    for(int i=p[u];i+1;i=e[i].next)
    {
        int w=e[i].en;
        if(!vis[w])
        {
            rr(w);
            son++;
        }
    }
    return son;
}
int slove()
{
    ans=0;
    df=0;
    memset(fa,-1,sizeof(fa));
    memset(dfn,-1,sizeof(dfn));
    memset(pp,0,sizeof(pp));
    for(int i=1;i<=n;i++)
    {
        if(dfn[i]==-1)
            dfs(i);
    }
    printf("Network #%d\n",kk);
    if(ans==0)
        printf("  No SPF nodes\n");
    else
    {
        for(int i=1;i<=n;i++)
        {
            int  hh;
            if(pp[i]==1)
            {
                hh=rrr(i);
                printf("  SPF node %d leaves %d subnets\n",i,hh);
            }
        }
    }
    printf("\n");
}
int main()
{
     kk=1;
     int s,t,ll=0;
    init();
    while(~scanf("%d",&s))
    {
    if(s==0)
    {
        if(ll==0) return 0;
        ll=0;
        slove();
        init();
        kk++;
    }
    else
    {
    ll++;
    scanf("%d",&t);
    n=max(n,s);
    n=max(n,t);
    add(s,t);
    add(t,s);
    }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值