1. 下载
http://www.brainnetome.org/toolkit/201710/t20171023_385323.html
2. 安装
tar zxvf DiffusionKitSetup-x86_64-v1.4-r161127.tar.gz
export PATH=$PATH:`pwd`/DiffusionKitSetup-x86_64-v1.4-r161127/bin
3.添加到环境变量
export PATH=$PATH:/your/path/to/diffusionkit
4. 下载示例代码命名process_primary.sh
#!/usr/bin/env bash
# This batch script is used to construct structural brain networks for a group of subjects using diffusion MRI data.
# The example data and files used in this script can be downloaded from http://diffusion.brainnetome.org/en/latest/download.html
# To run this script, you have to download the list file (list.txt), DWI data (Subject01 and Subject02) and atlas directory from the above link.
# However, if you want to download only one subject data for saving time, you should delete one line of the list.txt file accordingly.
# When you download all the files, you can get three compressed files (atlas.tar.gz, sub01.tar.gz and sub02.tar.gz) and a text file (list.txt) which
# contains subject ID. You'd better to make a directory (.e.g example) to run this tutorial script. And copy the three compressed files and list.txt
# into the example directory. The following steps should be done in the example directory. Uncompress the three conpressed file respectively.
# Finally, your "example" should be as follows.
#path/example
# ├── atlas
# │ ├── aal.nii.gz
# │ ├── aal.nii.lut
# │ ├── aal.nii.txt
# │ ├── aal_roi_024.txt
# │ ├── aal_roi_090.txt
# │ ├── BN_Atlas_246_1mm.nii.gz
# │ ├── BN_Atlas_246.txt
# │ └── ch2bet.nii.gz
# ├── list.txt
# ├── process_advanced.sh
# ├── process_primary.sh
# ├── sub01
# │ ├── dwi.bval
# │ ├── dwi.bvec
# │ ├── dwi.nii.gz
# │ └── t1.nii.gz
# └── sub02
# ├── dwi.bval
# ├── dwi.bvec
# ├── dwi.nii.gz
# └── t1.nii.gz
# Now you can run this script in example directory.
# By Sangma Xie, Mar. 10, 2016
for file in `cat list.txt`
do
cd $file
echo $file
#### First Step: Eddy correct the original DWI data.
bneddy -i dwi.nii.gz -o eddy -ref 0
#### Next: We'd better to rotate B-matrix according to the eddy correct log file.
bnrotate_bvec -i dwi.bvec -log eddy.txt -o rotated_bvecs
#### Next: Get b0 image for brain mask using the command of bncalc
bncalc -i eddy.nii.gz -roi_rect 0 -o b0
#### Next: Get brain mask using the command of bet2
bet2 b0.nii.gz nodif_brain -m nodif_brain_mask.nii.gz
bet2 t1.nii.gz brain -f 0.3
#### Next: We can achieve DTI related indices using the command bndti_estimate
bndti_estimate -d eddy.nii.gz -b dwi.bval -g rotated_bvecs -m nodif_brain_mask.nii.gz -o dti -tensor 1 -eig 1
#### Next: We can achieve diffusion/fiber ODF using the command bnhardi_ODF_estimate/bnhardi_FOD_estimate (Optional)
#bnhardi_ODF_estimate -d eddy.nii.gz -b dwi.bval -g rotated_bvecs -m nodif_brain_mask.nii.gz -o spfi -lambda_sh 1e-8 -lambda_ra 1e-8
#bnhardi_FOD_estimate -d eddy.nii.gz -b dwi.bval -g rotated_bvecs -m nodif_brain_mask.nii.gz -o csd
#### Next: Whole brain fibertracking
#### To perform whole brain fibertracking, we select the voxels with an FA value greater than 0.3 as seeds.
bncalc -i dti_FA.nii.gz -dthr 0.3 -o seeds
bncalc -i seeds -bin 0 -o seeds
#### Perform whole brain fibertracking with tensor or diffusion/fiber ODF.
bndti_tracking -d dti_tensor.nii.gz -m nodif_brain_mask.nii.gz -s seeds.nii.gz -fa dti_FA.nii.gz -o dti_wb.trk
#### hardi_tracking is time consuming. It's not compulsory for constructing brain networks.
#bnhardi_tracking -d spfi_EAP_profile.nii.gz -fa dti_FA.nii.gz -m nodif_brain_mask.nii.gz -s seeds.nii.gz -omp 1 -o spfi_wb.trk
#bnhardi_tracking -d csd.nii.gz -fa dti_FA.nii.gz -m nodif_brain_mask.nii.gz -s seeds.nii.gz -omp 1 -o csd_wb.trk
#### Next: Constrcut brain networks
#### In the network construction, Node definition is the first step. In this example, we select ROIs in AAL atlas as node.
#### Warp AAL atlas into the individual diffusion space using reg_aladin and reg_f3d
#### 1: Register individual T1 image to individual diffusion space. If T1 image is not available in your dataset, you can skip this step.
reg_aladin -ref dti_FA.nii.gz -flo brain.nii.gz -res brain_diff.nii.gz
#### 2: The coregistered T1 image is warped to the T1 tempalte (ch2bet.nii.gz) using reg_aladin and reg_f3d. If T1 image is not available in your
#### dataset, you can replace brain_diff.nii.gz with nodif_brain.nii.gz in the following steps.
reg_aladin -ref brain_diff.nii.gz -flo ../atlas/ch2bet.nii.gz -res stand_diff -aff stand_diff_affine.txt # -maxit 10 -ln 5
reg_f3d -ref brain_diff.nii.gz -flo ../atlas/ch2bet.nii.gz -res stand_diff_warp.nii.gz -aff stand_diff_affine.txt -vel -fmask ../atlas/ch2bet.nii.gz -cpp # -maxit 1000 -ln 5
#### 3: Apply the transformation on the AAL atlas to warp the AAL template from MNI space to the DTI native space in which the discrete labeling values
#### were preserved by using a nearest neighbor interpolation method.
reg_resample -ref brain_diff.nii.gz -flo ../atlas/aal.nii.gz -res aal_diff.nii.gz -trans outputCPP.nii -inter 0
#### Segment the cerebral cortex of each subject into 90 regions (45 for each hemisphere with the cerebellum excluded). In this step, you must use
#### "aal_roi_090.txt" to get all the ROIs (cerebellum excluded).
i=1
for roi in `cat ../atlas/aal_roi_090.txt`
do
echo $roi
echo $i
bncalc -i aal_diff.nii.gz -dthr $i -uthr $i -o $roi
i=$(($i+1));
done
#### Construct brain network. Each region in roi text file represents a node of the network. Two AAL node regions i and j were considered to be connected
#### if the reconstructed fiber bundles with two end points located in these two regions respectively were present. The number of the bundle connect two
#### specfic regions is used as edge of the network. In addition, we output the mean FA and MD into the network text file for further analysis.
#### The final networks are named as network_num.txt, network_fa.txt and network_md.txt.
#### However, network construction is time consuming, we select 24 regions as node to construct a simple network. If you want to construct whole brain
#### network you can replace all_roi_024.txt with aal_roi_090.txt to construct network with 90 nodes.
bnnetwork -fiber dti_wb.trk -roi ../atlas/aal_roi_024.txt -outfiber 1 -o network
#bnnetwork -fiber dti_wb.trk -roi ../atlas/aal_roi_090.txt -outfiber 1 -o network
# This is a temporary solution to delete roi-wise .trk file while keep the globle tract (dti_wb.trk)
rm -f ` ls *.trk|sed -e 's/dti_wb.trk/mmmmmmmmmm/g' `
cd ..
done
echo "Please check the results in the folder of each subject"
5. 下载并运行process_advanced.sh
#!/usr/bin/env bash
# This batch script is used to construct structural brain networks for a group of subjects using diffusion MRI data.
# The example data and files used in this script can be downloaded from http://diffusion.brainnetome.org/en/latest/download.html
# To run this script, you have to download the list file (list.txt), DWI data (Subject01 and Subject02) and atlas directory from the above link.
# However, if you want to download only one subject data for saving time, you should delete one line of the list.txt file accordingly.
# When you download all the files, you can get three compressed files (atlas.tar.gz, sub01.tar.gz and sub02.tar.gz) and a text file (list.txt) which
# contains subject ID. You'd better to make a directory (.e.g example) to run this tutorial script. And copy the three compressed files and list.txt
# into the example directory. The following steps should be done in the example directory. Uncompress the three conpressed file respectively.
# Finally, your "example" should be as follows.
#path/example
# ├── atlas
# │ ├── aal.nii.gz
# │ ├── aal.nii.lut
# │ ├── aal.nii.txt
# │ ├── aal_roi_024.txt
# │ ├── aal_roi_090.txt
# │ ├── BN_Atlas_246_1mm.nii.gz
# │ ├── BN_Atlas_246.txt
# │ └── ch2bet.nii.gz
# ├── list.txt
# ├── process_advanced.sh
# ├── process_primary.sh
# ├── sub01
# │ ├── dwi.bval
# │ ├── dwi.bvec
# │ ├── dwi.nii.gz
# │ └── t1.nii.gz
# └── sub02
# ├── dwi.bval
# ├── dwi.bvec
# ├── dwi.nii.gz
# └── t1.nii.gz
# Now you can run this script in example directory.
# Copyright (C) 2012-2016 Brainnetome Center at CASIA
# Written by Liangfu Chen <liangfu.chen@nlpr.ia.ac.cn>
# Sangma Xie <smxie@nlpr.ia.ac.cn>
if [ ! -d atlas ]; then
if [ -f atlas.tar.gz ]; then tar zxvf atlas.tar.gz
else echo 'atlas.tar.gz file is required to bulid brain network'; exit 1; fi
fi
for file in `cat list.txt`; do
# extract data to subject folder
if [ ! -f $file/dwi.nii.gz ] || [ ! -f $file/t1.nii.gz ]; then tar zxvf $file.tar.gz; cd $file; else cd $file; fi
# generate roi file to subject folder
if [ ! -f aal.nii.gz ]; then cp ../atlas/aal.nii.gz . ; fi
if [ ! -f aal.nii.txt ]; then cp ../atlas/aal.nii.txt . ; fi
if [ ! -f aal_roi_024.txt ]; then cp ../atlas/aal_roi_024.txt . ; fi
if [ ! -f aal_roi_090.txt ]; then cp ../atlas/aal_roi_090.txt . ; fi
if [ ! -f ch2bet.nii.gz ]; then cp ../atlas/ch2bet.nii.gz . ; fi
echo "
network.txt: dti_wb.trk roi
bnnetwork -fiber dti_wb.trk -roi aal_roi_024.txt -outfiber 0 -o network -omp 2
roi: aal_r.nii.gz
bnroisplit -i aal_r.nii.gz -o ./ -l aal.nii.txt
.PHONY: roi
brain.nii.gz: t1.nii.gz
bet2 t1.nii.gz brain -f 0.3
aal_r.nii.gz: b0.nii.gz dti.nii.gz brain.nii.gz
reg_aladin -ref dti_FA.nii.gz -flo brain.nii.gz -res brain_diff.nii.gz
reg_aladin -ref brain_diff.nii.gz -flo ch2bet.nii.gz -res stand_diff -aff stand_diff_affine.txt
reg_f3d -ref brain_diff.nii.gz -flo ch2bet.nii.gz -res stand_diff_warp.nii.gz -aff stand_diff_affine.txt -fmask ch2bet.nii.gz -cpp outputCPP.nii
reg_resample -ref brain_diff.nii.gz -flo aal.nii.gz -res aal_r.nii.gz -trans outputCPP.nii -inter 0
eddy.nii.gz: dwi.nii.gz
bneddy -i dwi.nii.gz -o eddy -ref 0
rotated_bvecs: eddy.nii.gz
bnrotate_bvec -i dwi.bvec -log eddy.txt -o rotated_bvecs
b0.nii.gz: eddy.nii.gz
bncalc -i eddy.nii.gz -roi_rect 0 -o b0
nodif_brain_mask.nii.gz: b0.nii.gz
bet2 b0.nii.gz nodif_brain -m nodif_brain_mask.nii.gz
seeds.nii.gz: dti.nii.gz
bncalc -i dti_FA.nii.gz -dthr 0.3 -o seeds
bncalc -i seeds -bin 0 -o seeds
dti.nii.gz: eddy.nii.gz rotated_bvecs nodif_brain_mask.nii.gz
bndti_estimate -d eddy.nii.gz -b dwi.bval -g rotated_bvecs -m nodif_brain_mask.nii.gz -o dti -tensor 1 -eig 1
dti_wb.trk: dti.nii.gz nodif_brain_mask.nii.gz seeds.nii.gz
bndti_tracking -d dti_tensor.nii.gz -m nodif_brain_mask.nii.gz -s seeds.nii.gz -fa dti_FA.nii.gz -o dti_wb.trk
" > Makefile
make -j2
cd ..
done
echo "Please check the results in the folder of each subject"