Spark学习之在集群上运行Spark(6)

本文深入探讨了Spark如何利用集群扩展计算能力,包括专用集群与共享云计算环境的应用。阐述了Spark在分布式环境中的主/从结构架构,驱动器节点与执行器节点的作用,以及如何通过集群管理器启动应用。介绍了如何使用`spark-submit`提交Python应用,打包依赖等关键步骤。

Spark学习之在集群上运行Spark(6)

1. Spark的一个优点在于可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力。

2. Spark既能适用于专用集群,也可以适用于共享的云计算环境。

3. Spark在分布式环境中的架构:

Created with Raphaël 2.1.0我的操作集群管理器Mesos、YARN、或独立集群管理器N个集群工作节点(执行器进程)

Spark集群采用的是主/从结构,驱动器(Driver)节点和所有执行器(executor)节点一起被称为一个Spark应用(application)。

Spark自带的集群管理器被称为独立集群管理器。

4. 驱动器节点

Spark的驱动器是执行程序main()方法的进程。它执行用户编写的用来创建SparkContext、创建RDD,以及进行RDD的转化操作和行动操作的代码。

5. 执行器节点

Spark的执行器节点是一种工作进程,负责在Spark作业中运行任务,任务间相互独立。
两大作用:第一,它们负责运行组成Spark应用的任务,并将结果返回给驱动器进程;第二,它们通过自身的块管理器(Block Manager)为用户程序中要求的缓存的RDD提供内存式存储。

6. 集群管理器

Spark依赖于集群管理器来启动执行器节点,在某特殊情况下,也依赖集群管理器来启动驱动器节点。

7. 提交Python应用(spark-submit)

bin/spark-submit my_script.py

8. 打包依赖

Maven或者sbt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值