1.题目描述:
Matrix Power Series
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order. Output Output the elements of S modulo m in the same way as A is given. Sample Input 2 2 4 0 1 1 1 Sample Output 1 2 2 3 Source
POJ Monthly--2007.06.03, Huang, Jinsong
|
[Submit] [Go Back] [Status] [Discuss]
2.题意概述:
题意是给定n*n矩阵A和整数k,要求一个矩阵S=A+A^2+...+A^k,输出S的每一个元素
3.解题思路:
很显然S[i]应该有这样的关系:
S[i+1]=S[i]+A^(i+1)
而对于A^(i+1),又有
A^(i+1)=A^(i) * A
如果构造这样的矩阵,其中矩阵每一个元素也都是矩阵:
S[i] A^(i+1) A
0 0 0 (其中0指的是零矩阵)
0 0 0
注意到这样的矩阵可以乘上一个矩阵而实现进行一步变换的目的,即
S[i] A^(i+1) A I 0 0 S[i+1] A^(i+2) A
0 0 0 x I A 0 = 0 0 0
0 0 0 0 0 I 0 0 0
(其中I指的是单位矩阵)
很显然这样由S[1]构造出一开始的矩阵然后连乘k-1次可以得到带有S[k]的矩阵。
然后因为中间乘上的k-1个矩阵完全相同,因此可以用快速幂加速。
4.AC代码:#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define N 30
#define pi acos(-1.0)
int MOD, n;
struct Matrix
{
int mat[N][N];
Matrix operator*(const Matrix& m)const {
Matrix tmp;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
{
tmp.mat[i][j] = 0;
for (int k = 0; k < n; k++)
tmp.mat[i][j] += mat[i][k] * m.mat[k][j] % MOD;
tmp.mat[i][j] %= MOD;
}
return tmp;
}
Matrix operator+(const Matrix& m)const {
Matrix tmp;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
tmp.mat[i][j] = (mat[i][j] + m.mat[i][j]) % MOD;
return tmp;
}
};
Matrix Pow(Matrix m, int t)
{
Matrix ans;
memset(ans.mat, 0, sizeof(ans.mat));
for (int i = 0; i < n; i++)
ans.mat[i][i] = 1;
while (t)
{
if (t & 1)
ans = ans*m;
t >>= 1;
m = m*m;
}
return ans;
}
Matrix solve(Matrix m, int t)
{
Matrix A;
memset(A.mat, 0, sizeof(A.mat));
for (int i = 0; i < n; i++)
A.mat[i][i] = 1;
if (t == 1)
return m;
if (t & 1)
return (Pow(m, t >> 1) + A)*solve(m, t >> 1) + Pow(m, t);
else
return (Pow(m, t >> 1) + A)*solve(m, t >> 1);
}
int main()
{
/*
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
*/
int k;
Matrix m, ans;
while (scanf("%d%d%d", &n, &k, &MOD) != EOF)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
scanf("%d", &m.mat[i][j]);
ans = solve(m, k);
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
if (j == 0)
printf("%d", ans.mat[i][j]%MOD);
else
printf(" %d", ans.mat[i][j]%MOD);
puts("");
}
}
return 0;
}