Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example
1:
Given intervals [1,3],[6,9],
insert and merge [2,5] in
as [1,5],[6,9].
Example
2:
Given [1,2],[3,5],[6,7],[8,10],[12,16],
insert and merge [4,9] in
as [1,2],[3,10],[12,16].
This is because the new interval [4,9] overlaps
with [3,5],[6,7],[8,10].
解析:对于这个问题无非就三种情况:1、被给出的间隔的终端比要插入的起始端小,则直接将其插入。2、被给出的间隔的起始端比要插入的终端大,将两者都插入。3、介入上述两种情况之间 即存在交叉。则考虑起始和终端时应取最小的起始端和最大的终止端即可。
代码:
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<Interval> result;
vector<Interval>::iterator it;
bool flag=true;
for (it=intervals.begin();it!=intervals.end();it++)
{
if (it->end<newInterval.start)
{
result.push_back(*it);
continue;
}
if (it->start>newInterval.end)
{
if (flag)
{
result.push_back(newInterval);
flag=false;
}
result.push_back(*it);
continue;
}
newInterval.start=it->start<newInterval.start?it->start:newInterval.start;
newInterval.end=it->end>newInterval.end?it->end:newInterval.end;
}
if (flag)
{
result.push_back(newInterval);
}
return result;
}
};
本文介绍了一种算法,用于在一组已排序的非重叠区间中插入一个新的区间,并在必要时进行合并。通过三个具体例子展示了该算法的工作原理及实现过程。
9万+

被折叠的 条评论
为什么被折叠?



