【AVL树的核心】

1 AVL树

1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下
单支树
因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树可以是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
    AVL树
    如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

1.2 AVL树节点的定义

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr)
		, _pRight(nullptr)
		, _pParent(nullptr)
		, _data(data), _bf(0)
	{}
	AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
	AVLTreeNode<T>* _pRight;  // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf;                  // 该节点的平衡因子
};

1.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点

  2. 调整节点的平衡因子

新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性。

  • pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:

      1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可。(左边高是-1)
      2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可。(右边高是1)
    
  • 所以插入后,pParent的平衡因子可能有三种情况:0,正负1, 正负2。

      1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功。
      2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新。
      3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理。
    
while (parent)
{
	if (cur == parent->left)
	{
		parent->_bf--;
	}
	else
	{
		parent->_bf++;
	}

	if (parent->_bf == 0)
	{
		break;
	}
	else if (parent->_bf == 1 || parent->_bf == -1)
	{
		cur = parent;
		parent = parent->_parent;
	}
	else
	{
		// 旋转。。。
	}
}

代码细节部分省略,这不是重点,AVL树的核心部分是旋转。。。

1.4 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1. 新节点插入较高右子树的右侧—右右:左单旋
左单旋示例图

void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		subR->_left = parent;

		Node* parentParent = parent->_parent;

		parent->_parent = subR;
		if(subRL)
			subRL->_parent = parent;
		
		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}

			subR->_parent = parentParent;
		}

		parent->_bf = subR->_bf = 0;
	}

2. 新节点插入较高左子树的左侧—左左:右单旋
右单旋示例图

void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}

			subL->_parent = parentParent;
		}

		subL->_bf = parent->_bf = 0;
	}

3. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋(右左双旋)
先左单旋再右单旋

void RotateRL(Node* parent)
{
	// 复用前面的左单旋和右单旋的代码
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;

	RotateR(parent->_right);
	RotateL(parent);

	if (bf == 0)
	{
		// subRL自己就是新增
		parent->_bf = subR->_bf = subRL->_bf = 0;
	}
	else if (bf == -1)
	{
		// subRL的左子树新增
		parent->_bf = 0;
		subRL->_bf = 0;
		subR->_bf = 1;
	}
	else if (bf == 1)
	{
		// subRL的右子树新增
		parent->_bf = -1;
		subRL->_bf = 0;
		subR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

4. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋
先左单旋再右单旋

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf;

	RotateL(parent->_left);
	RotateR(parent);

	if (bf == 0)
	{
		subL->_bf = subLR->_bf = parent->bf = 0;
	}
	else if (bf == 1)
	{
		parent->_bf = 0;
		subL->_bf = -1;
		subLR->_bf = 0;
	}
	else if (bf == -1)
	{
		parent->_bf = 1;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

以上是AVL树旋转部分的核心内容,有图有代码,一看就懂。。。

1.5 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值