### ResNet-18 残差网络架构详解与实现
ResNet-18 是一种经典的残差网络,由 He 等人在 2015 年提出。它通过引入残差连接解决了深层神经网络训练中的退化问题[^3]。以下是关于 ResNet-18 的架构、实现代码以及相关论文的详细介绍。
#### ResNet-18 架构概述
ResNet-18 是 ResNet 系列中最简单的模型之一,包含 18 层(不包括输入和输出层)。它的核心思想是通过残差块来缓解梯度消失问题,使得网络可以更深层次地扩展。每个残差块由两个卷积层组成,并通过一个恒等映射将输入直接加到输出上[^1]。
以下是 ResNet-18 的主要结构:
1. **输入层**:通常为 7×7 卷积核,步幅为 2,输出通道数为 64。
2. **最大池化层**:3×3 核大小,步幅为 2。
3. **残差块**:共 4 个阶段,每个阶段包含若干个残差块。
- 第一阶段:2 个残差块,通道数为 64。
- 第二阶段:2 个残差块,通道数为 128。
- 第三阶段:2 个残差块,通道数为 256。
- 第四阶段:2 个残差块,通道数为 512。
4. **全局平均池化层**:将特征图压缩为固定大小。
5. **全连接层**:用于分类任务,输出类别数取决于具体应用场景。
#### ResNet-18 实现代码
以下是一个基于 PyTorch 的 ResNet-18 实现示例:
```python
import torch
import torch.nn as nn
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet18(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet18, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion),
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def resnet18(num_classes=1000):
return ResNet18(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)
```
#### 相关论文
ResNet-18 的理论基础来源于以下论文:
- **Deep Residual Learning for Image Recognition**:这是 ResNet 的原始论文,详细介绍了残差网络的设计理念和实验结果。
#### 实验对比效果
在手写数字识别实验中,使用 ResNet-18(`use_residual=False`)与添加残差连接(`use_residual=True`)的效果对比表明,残差连接显著提升了模型的收敛速度和性能[^2]。
---