50、实战 - 利用 conv + bn + relu + add 写一个残差结构

本文介绍如何基于手工编写的conv、bn和relu算法实现Resnet中的残差结构。通过Python和C++代码展示如何构建这两种常见的残差结构,包括下采样和无下采样情况,并解释了残差结构中各组件的作用和实现细节。

上一节介绍了残差结构,还不清楚的同学可以返回上一节继续阅读。

到了这里,一个残差结构需要的算法基本都介绍完了,至少在 Resnet 这种神经网络中的残差结构是这样的。

本节我们做一个实战,基于之前几节中手写的 conv / bn 算法,来搭建一个残差结构。其中,relu 的实现和 add 的实现很简单。

relu 算法的实现用 python 来写就一行:

def ComputeReluLayer(img):
  res = np.maximum(0, img)
  return res

其中 img 是 relu 的输入数据,取输入数据和零的最大值即可, res 就是经过 relu 激活的结果。

而加法节点的实现就更简单,在 python 中就一个加法操作符就可以完成。

残差结构图

先看一下 resnet 中的残差结构图,在resnet50中,有两种残差结构,一种是如下的结构。

图中红框标注的是其中一种残差结构,这个结构的特点是左侧分支有3个卷积,每个卷积后面有一个 relu 激活函数。

你可能会问,左侧最后的一个卷积后面没有 relu 啊,这是因为左侧最后的一个卷积会和右侧的一个卷积相加,加完之后的结果再做 relu,实际上也相当于卷积后面都会有个relu。只要在卷

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董董灿是个攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值