openjudge-noi-4.6-1455:An Easy Problem

本文探讨了如何找出大于给定正整数I的最小整数J,使得J的二进制形式中1的数量与I相同。通过不断递增并检查每个数的二进制表示,直至找到符合条件的数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意大概是这样的:给一个数I,转化为二进制,找到一个比它大的数,使其1的数量与I相等,输出最小的满足题意的十进制数.

 

 

总时间限制: 

1000ms 

内存限制: 

65536kB

描述

As we known, data stored in the computers is in binary form. The problem we discuss now is about the positive integers and its binary form.

Given a positive integer I, you task is to find out an integer J, which is the minimum integer greater than I, and the number of '1's in whose binary form is the same as that in the binary form of I.

For example, if "78" is given, we can write out its binary form, "1001110". This binary form has 4 '1's. The minimum integer, which is greater than "1001110" and also contains 4 '1's, is "1010011", i.e. "83", so you should output "83".

输入

One integer per line, which is I (1 <= I <= 1000000).

A line containing a number "0" terminates input, and this line need not be processed.

输出

One integer per line, which is J.

样例输入

1
2
3
4
78
0

样例输出

2
4
5
8
83

来源

POJ Monthly,zby03

 

 

 

思考:反正就是一直把那个数mod2,算出1的个数.然后一个一个加上去,直到1的个数与原数相等.

代码,一次AC:

 

#include<cstdio>
int n,p;
int main()
{
	int i,q,m,r;
	while(1)
	{
		i=0;
		scanf("%d",&n);
		q=n;
		if(n==0) break;
		while(q)
		{
			if(q%2) i++;
			q/=2;
		}
		m=i;
		while(1)
		{
			i=0;
			n++;
			r=n;
			while(r)
			{
				if(r%2) i++;
				r/=2;
			}
			if(i==m)
			{
				printf("%d\n",n);
				break;
			}
		}
	}
}<cstdio>
int n,p;
int main()
{
	int i,q,m,r;
	while(1)
	{
		i=0;
		scanf("%d",&n);
		q=n;
		if(n==0) break;
		while(q)
		{
			if(q%2) i++;
			q/=2;
		}
		m=i;
		while(1)
		{
			i=0;
			n++;
			r=n;
			while(r)
			{
				if(r%2) i++;
				r/=2;
			}
			if(i==m)
			{
				printf("%d\n",n);
				break;
			}
		}
	}
}

因为这样子真的会比较好想吧..

 

不过应该会有更快的方法吧?

毕竟我这个程序用时86ms..

然后就是要用几个变量来存放,否则...嘿嘿嘿.

大概就这样说完了吧= =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值