LeetCode 刷题记录 34. Find First and Last Position of Element in Sorted Array

本文深入探讨了二分查找算法在寻找有序数组中目标值起始与终止位置的应用,提供了两种解决方案,一种是通过自定义二分查找逻辑,另一种是利用lower_bound和upper_bound函数。文章详细解释了算法原理及其实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
Given an array of integers nums sorted in ascending order, find the starting and ending position of a given target value.

Your algorithm’s runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

Example 1:

Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
Example 2:

Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]
解法1:
与正常的二分查找不同,由于此题要求的是最开始的元素和最后的元素,所以我们在二分查找时如果找到目标元素,我们首先记录下他的下标,如果是找第一个,我们就往左移,如果是找最后一个,我们就往右移
例如:5 7 7 8 9 10
先求first:mid = 7, 7 < 8, 舍弃左半边, lo = 3,hi = 5,lo <= hi 成立,继续迭代,mid = 8,记录此时的下标为4,由于是找第一个元素,所以我们要舍弃右半边,lo = 3,hi = 3,lo <= hi 成立,继续迭代,mid = 8,记录此时的下标为3,由于是找第一个元素,所以我们要舍弃右半边,lo = 3,hi = 2,,lo <= hi 不成立,结束循环,此时我们得到第一个元素的下标3
求last的情况和first一样,只不过我们在找到目标元素后向右移,舍弃左半边
我们还要考虑找不到的情况 所以我们预设idx为-1,结束后如果下标没有更新则返回-1
c++:

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        vector<int> res;
        int first = findFirst(nums,target);
        int last =  findLast(nums,target);
        res.push_back(first);
        res.push_back(last);
        return res;
    }
    int findFirst(vector<int>& nums, int target){
        int n = nums.size();
        int lo = 0;
        int hi = n - 1;
        int idx = -1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] == target){
                hi = mid - 1;
                idx = mid;
            } else if(nums[mid] > target){
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
            
        }
        return idx;
    }
    int findLast(vector<int>& nums, int target){
        int n = nums.size();
        int lo = 0;
        int hi = n - 1;
        int idx = -1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] == target){
                lo = mid + 1;
                idx = mid;
            } else if(nums[mid] > target){
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
            
        }
        return idx;
    }
};

java:

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int[] res = new int[2];
        int first = findFirst(nums,target);
        int last =  findLast(nums,target);
        res[0] = first;
        res[1] = last;
        return res;
    }
    public int findFirst(int[] nums, int target){
        int n = nums.length;
        int lo = 0;
        int hi = n - 1;
        int idx = -1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] == target){
                hi = mid - 1;
                idx = mid;
            } else if(nums[mid] > target){
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
            
        }
        return idx;
    }
    public int findLast(int[] nums, int target){
        int n = nums.length;
        int lo = 0;
        int hi = n - 1;
        int idx = -1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] == target){
                lo = mid + 1;
                idx = mid;
            } else if(nums[mid] > target){
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
            
        }
        return idx;
    }
    
}

python:
python list不能赋值,只能append

class Solution(object):
    def searchRange(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: List[int]
        """
        res = []
        first = self.findFirst(nums,target)
        last =  self.findLast(nums,target)
        res.append(first)
        res.append(last)
        return res
    def findFirst(self, nums, target):
        n = len(nums)
        lo = 0
        hi = n - 1
        idx = -1
        while lo <= hi:
            mid = lo + (hi - lo) / 2
            if nums[mid] == target:
                hi = mid - 1
                idx = mid
            elif nums[mid] > target:
                hi = mid - 1
            else:
                lo = mid + 1
            
            
        
        return idx
    
    def findLast(self, nums, target):
        n = len(nums)
        lo = 0
        hi = n - 1
        idx = -1
        while lo <= hi:
            mid = lo + (hi - lo) / 2
            if nums[mid] == target:
                lo = mid + 1
                idx = mid
            elif nums[mid] > target:
                hi = mid - 1
            else:
                lo = mid + 1
            
            
        
        return idx
    

解法2:
lower_bound() 找第一个大于等于val的位置
upper_bound() 找第一个大于val的位置
在本题中我们可以用lower_bound()找第一个位置,用upper_bound() - 1来找最后一个位置
此外我们还要考虑没找到的情况,由于lower_bound() 找第一个大于等于val的位置,所以它必定大于0,如果target大于数组的最大值,它将返回n(数组的长度)
所以我们可以用

if(first < n && nums[first] == target)

来判断是否找到了target
重点是lower_bound()和upper_bound()的实现
lower_bound():

int lower_bound(vector<int>& nums, int target){
        int n = nums.size();
        int lo = 0;
        int hi = n;
        while(lo < hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] >= target){
                hi = mid;
            } else {
                lo = mid + 1;
            }
            
        }
        return lo;

    }

该方案lo < hi 且初始空间为[0,n]
[5,7,7,8,8,10], target = 8
在这里插入图片描述
mid = 8 >=8,满足条件,说明第一个满足条件的元素一定在mid或者mid的做出,hi = mid
在这里插入图片描述
在这里插入图片描述
mid = 7,7 < 8,说明第一个大于等于8的一定在mid的右侧, lo = mid + 1
在这里插入图片描述
mid = 7,7 < 8,说明第一个大于等于8的一定在mid的右侧, lo = mid + 1
在这里插入图片描述
lo = hi结束循环,lo的位置即为第一个大于等于8的位置
[5,7,7,8,8,10], target = 11
在这里插入图片描述
mid = 8,8 < 11,说明第一个大于等于11的一定在mid的右侧, lo = mid + 1
在这里插入图片描述
mid 为10,·10< 11,说明第一个大于等于11的一定在mid的右侧, lo = mid + 1
在这里插入图片描述
lo = hi结束循环,lo的位置即为说明第一个大于等于8的位置
lower_bound()的第二种写法:
循环条件:lo <= hi 初始[0,n-1]

int lower_bound(vector<int>& nums, int target){
        int n = nums.size();
        int lo = 0;
        int hi = n - 1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] >= target){
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
            
        }
        return lo;
    }

[5,7,7,8,8,10], target = 8
在这里插入图片描述
mid = 7 7 < 8, lo = mid + 1
在这里插入图片描述
mid = 8 8 >= 8, hi = mid - 1不是维持mid
在这里插入图片描述
mid = 8 8 >= 8, hi = mid - 1不是维持mid
在这里插入图片描述
hi < lo 结束循环返回lo
[5,7,7,8,8,10], target = 11
在这里插入图片描述
mid = 7 7 < 11, lo = mid + 1
在这里插入图片描述
mid = 8 8 < 11, lo = mid + 1
在这里插入图片描述
mid = 10 8 < 11, lo = mid + 1
在这里插入图片描述
lo > hi 结束循环,返回lo
upper_bound()函数和lower_bound()函数一样只不过判断条件为>,而不是>=
C++:
C++ vector重载了= 所以可以用res[0] = first;

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        vector<int> res(2,-1);
        int n = nums.size();
        int first = lower_bound(nums,target);
        int last =  upper_bound(nums,target) - 1;
        cout << first << " " << last <<endl;
        if(first < n && nums[first] == target){
            res[0] = first;
            res[1] = last;
            return res;
        } else {
            return res;
        }
        
    }
    int lower_bound(vector<int>& nums, int target){
//         int n = nums.size();
//         int lo = 0;
//         int hi = n;
//         while(lo < hi){
//             int mid = lo + (hi - lo) / 2;
//             if(nums[mid] >= target){
//                 hi = mid;
//             } else {
//                 lo = mid + 1;
//             }
            
//         }
//         return lo;
        int n = nums.size();
        int lo = 0;
        int hi = n - 1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] >= target){
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
            
        }
        return lo;
    }
    int upper_bound(vector<int>& nums, int target){
        int n = nums.size();
        int lo = 0;
        int hi = n;
        while(lo < hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] > target){
                hi = mid;
            } else {
                lo = mid + 1;
            }
            
        }
        return lo;
//         int n = nums.size();
//         int lo = 0;
//         int hi = n - 1;
//         while(lo <= hi){
//             int mid = lo + (hi - lo) / 2;
//             if(nums[mid] > target){
//                 hi = mid - 1;
//             } else {
//                 lo = mid + 1;
//             }
            
//         }
//         return lo;
    }
};

java:

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int[] res = new int[2];
        res[0] = -1;
        res[1] = -1;
        int n = nums.length;
        int first = lower_bound(nums,target);
        int last =  upper_bound(nums,target) - 1;
        if(first < n && nums[first] == target){
            res[0] = first;
            res[1] = last;
            return res;
        } else {
            return res;
        }
    }
    public int lower_bound(int[] nums, int target){
        int n = nums.length;
        int lo = 0;
        int hi = n - 1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] >= target){
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
            
        }
        return lo;
    }
    public int upper_bound(int[] nums, int target){
        int n = nums.length;
        int lo = 0;
        int hi = n - 1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] > target){
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
            
        }
        return lo;
    }
    
}

python:
python list不能用赋值=

class Solution(object):
    def searchRange(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: List[int]
        """
        res = []
        n = len(nums)
        first = self.lower_bound(nums,target)
        last =  self.upper_bound(nums,target) - 1
        if first < n and nums[first] == target:
            res.append(first)
            res.append(last)
            return res
        else:
            res.append(-1)
            res.append(-1)
            return res
        
    def lower_bound(self, nums, target):
        n = len(nums)
        lo = 0
        hi = n - 1
        
        while lo <= hi:
            mid = lo + (hi - lo) / 2
            if nums[mid] >= target:
                hi = mid - 1
           
            else:
                lo = mid + 1
            
            
        
        return lo
    
    def upper_bound(self, nums, target):
        n = len(nums)
        lo = 0
        hi = n - 1
       
        while lo <= hi:
            mid = lo + (hi - lo) / 2
            if nums[mid] > target:
                hi = mid - 1
            else:
                lo = mid + 1
            
            
        
        return lo
    
1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值