55. Jump Game

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

For example:
A = [2,3,1,1,4], return true.

A = [3,2,1,0,4], return false.


代码:

class Solution {
public:
    //递归解法
    bool canJump2(vector<int>& nums) {
        return helper(nums, nums.size() - 1);
    }
    bool helper(vector<int>& nums, int last){
        if(last == 0) return true;
        int leftmost = nums.size();
        for(int i = last - 1; i >= 0; i--){
            if(nums[i] >= last - i)
            {leftmost = i;
            break;//这个break太重要了! 不用每次都遍历数组寻找到leftmost,只需要找到left即可,因为一定会有leftmost可以到达left
            }
        }
        if(leftmost == nums.size()) return false;
        return helper(nums, leftmost);
    }
    //迭代解法
    bool canJump(vector<int>& nums) {
        int reach = 0;
        for(int i = 0; i <= reach; i++){
            reach = max(i + nums[i], reach);
            if(reach >= nums.size() - 1)return true;
        }
        return false;
    }
};

最优化代码:

bool canJump(int A[], int n) {
    int i = 0;
    for (int reach = 0; i < n && i <= reach; ++i)
        reach = max(i + A[i], reach);
    return i == n;
}
题目2:

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

For example:
Given array A = [2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

Note:
You can assume that you can always reach the last index.

代码:

class Solution {
public:
    //TLE
    int jump2(vector<int>& nums) {
        int times = 0;
        unordered_set<int> start;
        start.insert(0);
        
        if(nums.size() == 1) return 0;
        while(1){
             unordered_set<int> temp;
            times++;
            for(int i : start)
            
            {
                
                for(int j = 1; j <= nums[i]; j++){
                    if(!temp.count(i + j))
                    temp.insert(i + j);
                }
            }
            start = temp;
            if(temp.count(nums.size() - 1)) break;
            
        }
        return times;
    }
    //AC code
    int jump(vector<int>& nums) {
        int bound = 0, reach = 0, level = 0;
        if(nums.size() == 1) return 0;
        for(int i = 0; i < nums.size() && i <= bound; i++){
            reach = max(reach, i + nums[i]);
            if(i == bound && i != nums.size() - 1){
                bound = reach;
                level++;
            }
        }
        return level;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值