钢管求验收

本文介绍了一种基于图像处理的钢管检测算法,通过使用Canny边缘检测和Hough圆变换,实现了对钢管的有效识别。在实验中,该算法对钢管1的检测正确率接近100%,对钢管2的检测正确率在排除错检后达到95.6%。
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
import my_util as util
import mian
def main():
    import cv2
    import numpy as np

    filename = "images/many.jpg"
    image = cv2.imread(filename)
    radious = int(mian.find_radious(image))
    #image = cv2.imread("images/24.jpg")
    contours_img = image.copy()

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    gray = cv.equalizeHist(gray)
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
   #cv_show('blurred', blurred)
    edged = cv2.Canny(blurred, 75, 200)
    util.image_read('edged', edged)




    #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    #blur = cv2.medianBlur(gray, 5)
    # circles = cv2.HoughCircles(gray, cv2_HOUGH_GRADIENT, 1, 10)

    #circles = cv2.HoughCircles(edged, cv2.HOUGH_GRADIENT, 1, 30,param1=50, param2=30, minRadius=25, maxRadius=40)
    circles = cv2.HoughCircles(edged, cv2.HOUGH_GRADIENT, 1, 5+radious, param1=50, param2=20, minRadius=int(radious*0.5), maxRadius=int(radious*1.5))

    #cv2.HoughCircles(blur,cv2.HOUGH_GRADIENT , dp, minDist, circles, param1, param2, minRadius, maxRadius)

    circles = np.uint16(np.around(circles))

    for i in circles[0, :]:
        # draw the outer circle
        cv2.circle(image, (i[0], i[1]), i[2], (255, 0, 0), 2)
        # draw the center of the circle
        cv2.circle(image, (i[0], i[1]), 2, (0, 255, 0), 5)

    cv2.imshow('detected circles', image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    print("钢管数目为:",len(circles[0,:]))

if __name__ == '__main__':
    main()

try_1.py

 

钢管1:

 

漏检一个,错检一个.正确率几乎100%

钢管2:

错检一个,漏检:8个

如果不算错检,正确率达到95.6%

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值