The Triangle
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.-
输入
- Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99. 输出
- Your program is to write to standard output. The highest sum is written as an integer. 样例输入
-
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
样例输出
-
30
解析:这是一个简单动态规划问题(数塔),和我博客另外一题(免费馅饼)类似,思路就是倒着计算,数塔每个位置变为他能成为的最大数,最后dp[1][1]就是结果。
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[105][105],n;
int main()
{
while(~scanf("%d",&n)){
memset(dp,0,sizeof(dp));
for(int i = 1; i <= n; i++){
for(int j = 1; j <= i; j++){
scanf("%d",&dp[i][j]);
}
}
for(int i = n - 1; i >= 1; i--){
for(int j = 1; j <= i; j++){
dp[i][j] = dp[i][j] + max(dp[i+1][j],dp[i+1][j+1]);
}
}
printf("%d\n",dp[1][1]);
}
}
1996

被折叠的 条评论
为什么被折叠?



