【Torch API】Pytorch中torch.repeat()函数解析

本文详细介绍了PyTorch中的torch.repeat()函数,用于张量的重复扩充。通过不同参数设置,可以实现按行、列、通道等维度的重复。文中给出了多个代码示例,包括一维和二维张量的情况,帮助理解该函数的使用方法。
部署运行你感兴趣的模型镜像

torch一. torch.repeat()函数解析

官网torch.tensor.repeat(),函数说明如下图所示:

torch.tensor.repeat()

2. 函数功能
torch.tensor.repeat()函数可以对张量进行重复扩充
1) 当参数只有两个时:(行的重复倍数,列的重复倍数),1表示不重复。
2) 当参数有三个时:(通道数的重复倍数,行的重复倍数,列的重复倍数),1表示不重复。

3. 代码例子如下:
3.1 输入一维张量,参数为一个,即表示在列上面进行重复n次

a = torch.randn(3)
a,a.repeat(4)
结果如下所示:
(tensor([ 0.81, -0.57,  0.10]),
 tensor([ 0.81, -0.57,  0.10,  0.81, -0.57,  0.10,  0.81, -0.57,  0.10,  0.81,
         -0.57,  0.10]))

3.2 输入一维张量,参数为两个(m,n),即表示先在列上面进行重复n次,再在行上面重复m次,输出张量为二维

a = torch.randn(3)
a,a.repeat(4,2)
(tensor([ 0.06, -0.76, -0.59]),
 tensor([[ 0.06, -0.76, -0.59,  0.06, -0.76, -0.59],
         [ 0.06, -0.76, -0.59,  0.06, -0.76, -0.59],
         [ 0.06, -0.76, -0.59,  0.06, -0.76, -0.59],
         [ 0.06, -0.76, -0.59,  0.06, -0.76, -0.59]]))

3.3 输入一维张量,参数为三个(b,m,n),即表示先在列上面进行重复n次,再在行上面重复m次,最后在通道上面重复b次,输出张量为三维

a = torch.randn(3)
a,a.repeat(3,4,2)
输出结果如下:
(tensor([2.25, 0.49, 1.47]),
 tensor([[[2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47]],
 
         [[2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47]],
 
         [[2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47]]]))

3.4 输入二维张量,参数为两个(m,n),即表示先在列上面进行重复n次,再在行上面重复m次,输出张量为两维注意参数个数必须大于输入张量维度个数

a = torch.randn(3,2)
a,a.repeat(4,2)
输出结果如下:
(tensor([[-0.58, -1.21],
         [-0.35,  0.68],
         [ 0.33,  0.70]]),
 tensor([[-0.58, -1.21, -0.58, -1.21],
         [-0.35,  0.68, -0.35,  0.68],
         [ 0.33,  0.70,  0.33,  0.70],
         [-0.58, -1.21, -0.58, -1.21],
         [-0.35,  0.68, -0.35,  0.68],
         [ 0.33,  0.70,  0.33,  0.70],
         [-0.58, -1.21, -0.58, -1.21],
         [-0.35,  0.68, -0.35,  0.68],
         [ 0.33,  0.70,  0.33,  0.70],
         [-0.58, -1.21, -0.58, -1.21],
         [-0.35,  0.68, -0.35,  0.68],
         [ 0.33,  0.70,  0.33,  0.70]]))

3.5 输入二维张量,参数为三个(b,m,n),即表示先在列上面进行重复n次,再在行上面重复m次,最后在通道上面重复b次,输出张量为三维。(注意输出张量维度个数为参数个数)

a = torch.randn(3,2)
a,a.repeat(3,4,2)
输出结果如下:
(tensor([[-0.75,  1.20],
         [-1.50,  1.75],
         [-0.05,  0.40]]),
 tensor([[[-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40]],
 
         [[-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40]],
 
         [[-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40]]]))

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值