R语言中使用CUT函数将数据进行分段重编码

本文介绍如何使用R语言对连续变量进行分段处理,包括平均分段、按具体数值分段以及按百分位数分段的方法,并提供具体示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在很多SCI论文中,都会把连续变量进行分段比较,如年龄分为青年、中年、老年,或者把某一指标连续高,中,低分为几等分再进行性分析,如下图所示,把连续的孕周通过认为的分为早孕、中孕和晚孕
在这里插入图片描述
在R语言中,实现这种方法,我们需要把连续变量进行分段(也叫分箱)然后进行重编码对数据进行分析,这一步很重要,这是为后面的分析做准备。今天我们通过使用R语言自带的CUT函数来演示对数据的分段重编码及数据整理。
我们今天使用SPSS软件自带的Breast cancer surviva的数据资料为演示,先打开Rstudiu把数据导入,并且删除缺失值

library(foreign)#导入foreign包
bc <- read.spss("E:/r/Breast cancer survival agec.sav",
                use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)

在这里插入图片描述
查看一下该数据

head(bc)

在这里插入图片描述
第二个指标是年龄,我们打算把年龄平局分为高中低三个区间

age1<-cut(bc$age,breaks = 3,labels = c(1,2,3))#平均分为3个区间,命名为1,2,3

在这里插入图片描述

dc<-cbind(bc,age1)#把变量加入表格

在这里插入图片描述

这样就把年龄进行了分组重编码。我们还可以对具体年龄段进行分组

age2<-cut(bc$age,breaks=c(0,20,60,100),include.lowest=T,
          labels = c(1,2,3))#把age划分为0-20,20-60,60到100这样3个区间
dd<-cbind(bc,age2)#把变量加入表格

在这里插入图片描述

也可以按百分位比把年龄进行分段

age3<-quantile(bc$age,c(0,.25,.50,.75,1))
dc<-cbind(bc,age3)#把变量加入表格

在这里插入图片描述
动动小手关注一下吧,更多精彩文章尽在零基础说科研

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值