test1

本文深入解析了机器学习中过拟合误差的数学表达,通过复杂的公式推导,阐述了算法学习模型与真实目标函数之间的关系,揭示了在无限大的样本空间下,学习算法的期望过拟合误差的计算方法。

## 1.1
$$E_{o t e}\left(\mathfrak{L}_{a} | X, f\right)=\sum_{h} \sum_{\boldsymbol{x} \in \mathcal{X}-X} P(\boldsymbol{x}) \mathbb{I}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) P\left(h | X, \mathfrak{L}_{a}\right)$$
[解析]:参见公式(1.2)

## 1.2
$$\begin{aligned}
\sum_{f}E_{ote}(\mathfrak{L}_a\vert X,f) &= \sum_f\sum_h\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x})\mathbb{I}(h(\boldsymbol{x})\neq f(\boldsymbol{x}))P(h\vert X,\mathfrak{L}_a) \\
&=\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x}) \sum_hP(h\vert X,\mathfrak{L}_a)\sum_f\mathbb{I}(h(\boldsymbol{x})\neq f(\boldsymbol{x})) \\
&=\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x}) \sum_hP(h\vert X,\mathfrak{L}_a)\cfrac{1}{2}2^{\vert \mathcal{X} \vert} \\
&=\cfrac{1}{2}2^{\vert \mathcal{X} \vert}\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x}) \sum_hP(h\vert X,\mathfrak{L}_a) \\
&=2^{\vert \mathcal{X} \vert-1}\sum_{\boldsymbol{x}\in\mathcal{X}-X}P(\boldsymbol{x}) \cdot 1\\
\end{aligned}$$
[解析]:第1步到第2步是因为$\sum_i^m\sum_j^n\sum_k^o a_ib_jc_k=\sum_i^m a_i \cdot \sum_j^n b_j \cdot \sum_k^o c_k$;第2步到第3步:首先要知道此时我们对$f$的假设是任何能将样本映射到{0,1}的函数且服从均匀分布,也就是说不止一个$f$且每个$f$出现的概率相等,例如样本空间只有两个样本时:$ \mathcal{X}=\{\boldsymbol{x}_1,\boldsymbol{x}_2\},\vert \mathcal{X} \vert=2$,那么所有的真实目标函数$f$为:
$$\begin{aligned}
f_1:f_1(\boldsymbol{x}_1)=0,f_1(\boldsymbol{x}_2)=0;\\
f_2:f_2(\boldsymbol{x}_1)=0,f_2(\boldsymbol{x}_2)=1;\\
f_3:f_3(\boldsymbol{x}_1)=1,f_3(\boldsymbol{x}_2)=0;\\
f_4:f_4(\boldsymbol{x}_1)=1,f_4(\boldsymbol{x}_2)=1;
\end{aligned}$$
一共$2^{\vert \mathcal{X} \vert}=2^2=4$个真实目标函数。所以此时通过算法$\mathfrak{L}_a$学习出来的模型$h(\boldsymbol{x})$对每个样本无论预测值为0还是1必然有一半的$f$与之预测值相等,例如,现在学出来的模型$h(\boldsymbol{x})$对$\boldsymbol{x}_1$的预测值为1,也即$h(\boldsymbol{x}_1)=1$,那么有且只有$f_3$和$f_4$与$h(\boldsymbol{x})$的预测值相等,也就是有且只有一半的$f$与它预测值相等,所以$\sum_f\mathbb{I}(h(\boldsymbol{x})\neq f(\boldsymbol{x})) = \cfrac{1}{2}2^{\vert \mathcal{X} \vert} $;第3步一直到最后显然成立。值得一提的是,在这里我们假设真实的目标函数$f$为“任何能将样本映射到{0,1}的函数且服从均匀分布”,但是实际情形并非如此,通常我们只认为能高度拟合已有样本数据的函数才是真实目标函数,例如,现在已有的样本数据为$\{(\boldsymbol{x}_1,0),(\boldsymbol{x}_2,1)\}$,那么此时$f_2$才是我们认为的真实目标函数,由于没有收集到或者压根不存在$\{(\boldsymbol{x}_1,0),(\boldsymbol{x}_2,0)\},\{(\boldsymbol{x}_1,1),(\boldsymbol{x}_2,0)\},\{(\boldsymbol{x}_1,1),(\boldsymbol{x}_2,1)\}$这类样本,所以$f_1,f_3,f_4$都不算是真实目标函数。这也就是西瓜书公式(1.3)下面的第3段话举的“骑自行车”的例子所想表达的内容。

【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了一种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI一区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,并可通过替换不同算法或测试系统进一步拓展研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值