CodeForces - 940E Cashback

CodeForces - 940E Cashback

传送门:Codeforces 940E
题意:给一个串,现在把一个串分成任意多个区间,设一个区间长度为k,然后每个区间将自己最小的k/c(向下取整)个数删除,问删除数后所有区间的数字之和。
题解:首先先想这很符合dp,但是没有办法处理区间中最小的那些数,就算处理好了,dp也是 O ( n 2 ) O(n^2) O(n2)级别的,所以要先想别的办法。贪心修改数学模型是不错的方法,这题我们可以想到如果一个区间长度为2c,那我们可以删两个数。但如果我们把区间变成c+c两个区间,答案一定会更优。如果一个区间长度是(c+a)(a<c),那这个区间就可以拆成c+a两个区间,答案没有影响。于是,这题就变为如果要用删除操作,那么这个区间长度一定是c,剩下的区间长度都小于c(等于直接相加)。
先考虑那些区间小于c的那么 d p [ i ] = m i n ( d p [ i − k ] + S u m [ i ] − S u m [ i − k ] ) ( k &lt; c ) dp[i]=min(dp[i-k]+Sum[i]-Sum[i-k])(k&lt;c) dp[i]=min(dp[ik]+Sum[i]Sum[ik])k<c这个可以用单调队列实现 O ( n ) O(n) O(n),然后再加一个 d p [ i ] = m i n ( d p [ i ] , d p [ i − c ] + S u m [ i ] − S u m [ i − c ] − M i n [ i ] ) dp[i]=min(dp[i],dp[i-c]+Sum[i]-Sum[i-c]-Min[i]) dp[i]=min(dp[i],dp[ic]+Sum[i]Sum[ic]Min[i])Min[i]表示i前c个数的最小一个的值,其中Min[i]也可以用单调队列实现 O ( n ) O(n) O(n)

代码:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=1e5+5;
const int INF=1e9+5;
struct node
{
	long long num;
	int id;
};
long long dp[maxn];
int a[maxn];
node Q[maxn];
long long sum[maxn];
int Mi[maxn];
int l,r,n,c;
int main()
{
	int n;
	cin >> n >> c;
	for (int i=1;i<=n;i++)
	{
		cin >> a[i];
		sum[i]=sum[i-1]+a[i];
	}
	l=r=1;
	Q[l]={INF,0};
	if (c==1) cout <<0;
	else
	{
		for (int i=1;i<=n;i++)
		{
			while (i-Q[l].id>=c)
				l++;
			while (Q[r].num>a[i]&&l<=r) 
				r--;
			Q[++r]={a[i],i};
			Mi[i]=Q[l].num;
		}
		l=r=1;
		Q[l]={0,0};
		for (int i=1;i<=n;i++)
		{
			while (i-Q[l].id>=c-1) l++;
			if (c==2)
				dp[i]=dp[i-1]+a[i];
			else
				dp[i]=Q[l].num+sum[i];
			if (i>=c)
				dp[i]=min(dp[i-c]+sum[i]-sum[i-c]-Mi[i],dp[i]);
			long long u=dp[i]-sum[i];
			while (Q[r].num>u&&l<=r) r--;
			Q[++r]={u,i};
		}
		cout << dp[n];
	}
}
### Codeforces Problem 976C Solution in Python For solving problem 976C on Codeforces using Python, efficiency becomes a critical factor due to strict time limits aimed at distinguishing between efficient and less efficient solutions[^1]. Given these constraints, it is advisable to focus on optimizing algorithms and choosing appropriate data structures. The provided code snippet offers insight into handling string manipulation problems efficiently by customizing comparison logic for sorting elements based on specific criteria[^2]. However, for addressing problem 976C specifically, which involves determining the winner ('A' or 'B') based on frequency counts within given inputs, one can adapt similar principles of optimization but tailored towards counting occurrences directly as shown below: ```python from collections import Counter def determine_winner(): for _ in range(int(input())): count_map = Counter(input().strip()) result = "A" if count_map['A'] > count_map['B'] else "B" print(result) determine_winner() ``` This approach leverages `Counter` from Python’s built-in `collections` module to quickly tally up instances of 'A' versus 'B'. By iterating over multiple test cases through a loop defined by user input, this method ensures that comparisons are made accurately while maintaining performance standards required under tight computational resources[^3]. To further enhance execution speed when working with Python, consider submitting codes via platforms like PyPy instead of traditional interpreters whenever possible since they offer better runtime efficiencies especially important during competitive programming contests where milliseconds matter significantly.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值