算法相关知识

1.动态规划

一、基本概念

动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

二、基本思想与策略

基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

三、适用的情况

能采用动态规划求解的问题的一般要具有3个性质:

(1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

(2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

四、求解的基本步骤

动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

初始状态→│决策1│→│决策2│→…→│决策n│→结束状态

(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。

(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。

(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。

一般,只要解决问题的阶段、状态和状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。

实际应用中可以按以下几个简化的步骤进行设计:

(1)分析最优解的性质,并刻画其结构特征。

(2)递归的定义最优解。

(3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值

(4)根据计算最优值时得到的信息,构造问题的最优解

五、算法实现的说明

动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。

使用动态规划求解问题,最重要的就是确定动态规划三要素:

(1)问题的阶段

(2)每个阶段的状态

(3)从前一个阶段转化到后一个阶段之间的递推关系。

递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。

确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}

六、动态规划算法基本框架

for(j=1; j<=m; j=j+1) // 第一个阶段

xn[j] = 初始值;

for(i=n-1; i>=1; i=i-1)// 其他n-1个阶段

for(j=1; j>=f(i); j=j+1)//f(i)与i有关的表达式

xi[j]=j=max(或min){g(xi-1[j1:j2]), ......, g(xi-1[jk:jk+1])};

t = g(x1[j1:j2]); // 由子问题的最优解求解整个问题的最优解的方案

print(x1[j1]);

for(i=2; i<=n-1; i=i+1{

t = t-xi-1[ji];

for(j=1; j>=f(i); j=j+1)

if(t=xi[ji])

break;

}

贪心算法

贪心法是设计算法中另一种常用的策略,就像分治法、回溯法和动态规划算法一样,其可用来解决最优化问题。经典贪心算法基本思想:

遵循某些贪心准则,在当前状态下做出局部最优选择。这被称为贪心选择。
我们希望能够从局部最优解中推导出全局最优解。
贪心选择属性:局部最优解导出全局最优解。
在设计好的贪心算法的过程中,找到一个合适的贪心选择准则是很关键的。不同的贪心准则会导致不同的结果。 尽管贪心算法能够得出可行的解决方案,但它得出的可能不总是最优解。因此需要证明对于任何有效的输入,贪心算法总能找到最优解。即为了反驳贪心算法不能得出最优解这种观点,我们需要反例。

最优化问题:给出一个问题的实例,一组约束条件和目标函数,找到一个可行的解决方案,对于给定的实例为目标函数的最优值。

动态规划与贪心算法的区别:

  • 1.贪心算法每一步的最优解一定包含上一步的最优解,上一步之前的最优解则不作保留;动态规划全局最优解中不一定包含前一个局部最优解,因此需要记录之前的所有的局部最优解。
  • 2.贪心不能保证最后解是最佳的,一般复杂度低;而动态规划本质是穷举法,可以保证结果是最佳的,复杂度高。

不同点:
== 贪心算法==:
1.贪心算法中,作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留。
2.由(1)中的介绍,可以知道贪心法正确的条件是:每一步的最优解一定包含上一步的最优解。

== 动态规划算法==:
1.全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解
2.动态规划的关键是状态转移方程,即如何由以求出的局部最优解来推导全局最优解
3.边界条件:即最简单的,可以直接得出的局部最优解


贪心算法与动态规划
贪心法的基本思路:

从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。
该算法存在问题:

  1. 不能保证求得的最后解是最佳的;
  2. 不能用来求最大或最小解问题;
  3. 只能求满足某些约束条件的可行解的范围。实现该算法的过程:从问题的某一初始解出发;

3. KMP算法

代码

void getNext(vector<int>& next, string sub) {
    next[0] = -1;
    next[1] = 0;
    int k = next[1];
    size_t i = 1;
    while (i < sub.size()) {
        if ( k == -1 || sub[i] == sub[k]) {
            next[i+1] = k+1;
            i++;
            k = next[i];
        }else {
            k = next[k];
        }
    }
}

int kmp(string str, string substr, int pos)
{
    vector<int>next(substr.size(), 0);
    getNext(next, substr);
    if (str.empty() || substr.empty()) {
        return -1;
    }
    int i = pos;
    int j = 0;
    while (i < str.size() && j < substr.size()) {
        if (j == -1 || str[i] == substr[j]) {
            i++;
            j++;
        }else {
            j = next[j];
        }
    }
    if (j == substr.size()) {
        return i - j;
    }
    return -1;
}

int main(int argc, const char * argv[]) {
    cout << kmp("ababcabcdabcde", "abcd", 0) << endl;
    
}

详细解读kmp 算法

4.BFS和DFS

DFS:深度优先搜索
深度优先遍历主要思路是从图中一个未访问的顶点 V 开始,沿着一条路一直走到底,然后从这条路尽头的节点回退到上一个节点,再从另一条路开始走到底…,不断递归重复此过程,直到所有的顶点都遍历完成,它的特点是不撞南墙不回头,先走完一条路,再换一条路继续走。
例如对于二叉树

递归实现:

public class Solution {
    private static class Node {
        /**
         * 节点值
         */
        public int value;
        /**
         * 左节点
         */
        public Node left;
        /**
         * 右节点
         */
        public Node right;

        public Node(int value, Node left, Node right) {
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }

    public static void dfs(Node treeNode) {
        if (treeNode == null) {
            return;
        }
        // 遍历节点
        process(treeNode)
        // 遍历左节点
        dfs(treeNode.left);
        // 遍历右节点
        dfs(treeNode.right);
    }
}

非递归实现:

public static void dfsWithStack(Node root) {
    if (root == null) {
        return;
    }

    Stack<Node> stack = new Stack<>();
    // 先把根节点压栈
    stack.push(root);
    while (!stack.isEmpty()) {
        Node treeNode = stack.pop();
        // 遍历节点
        process(treeNode)

        // 先压右节点
        if (treeNode.right != null) {
            stack.push(treeNode.right);
        }

        // 再压左节点
        if (treeNode.left != null) {
            stack.push(treeNode.left);
        }
    }
}

BFS广度优先搜索
例题
广度优先遍历,指的是从图的一个未遍历的节点出发,先遍历这个节点的相邻节点,再依次遍历每个相邻节点的相邻节点。

优缺点:

一般来说,广搜常用于找单一的最短路线,或者是规模小的路径搜索,它的特点是"搜到就是最优解", 而深搜用于找多个解或者是"步数已知(好比3步就必需达到前提)"的标题,它的空间效率高,然则找到的不必定是最优解,必需记实并完成全数搜索,故一般情况下,深搜需要很是高效的剪枝(优化)。

  • 搜索树的形态:深搜层数良多,广搜则是很宽。

  • 深搜合适找出所有方案,广搜则用来找出最佳方案

深度优先搜索:
优点
1、能找出所有解决方案
2、优先搜索一棵子树,然后是另一棵,所以和广搜对比,有着内存需要相对较少的优点
缺点
1、要多次遍历,搜索所有可能路径,标识做了之后还要取消。
2、在深度很大的情况下效率不高

广度优先搜索
优点
1、对于解决最短或最少问题特别有效,而且寻找深度小
2、每个结点只访问一遍,结点总是以最短路径被访问,所以第二次路径确定不会比第一次短
缺点
1、内存耗费量大(需要开大量的数组单元用来存储状态)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Michael.Scofield

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值