主成分分析法Principal component analysis (PCA)介绍

主成分分析(PCA)是一种统计方法,通过正交变换将一组可能相关的变量转化为一组线性不相关的主成分。PCA的主要作用是降低维度,将原本线性相关的变量转化为相互独立的主元,适用于特征重建和数据聚类。算法原理包括协方差原理、SVD分解,通过这些方法找到特征向量并构建转换矩阵,最终实现数据降维。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.简介

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.
从本质上来讲,主成分分析法是一种空间映射的方法,将在常规正交坐标系(我们看到的)的变量通过矩阵变换操作映射到另一个正交坐标系中的主元。做这个映射的目的是为了减少变量间的线性相关性。

2.作用

本来变量之间有线性相关性,现在都变成了相互独立。如果变量是作为分类的特征的话,那么主成分分析法起到了一种特征重建的作用;从最后的表示来看,主元是由原来的变量线性组合而成,原来的变量之间是线性相关的,而主元之间是相互独立的,直观上的可以通过主成分分析法进行聚类;当然,从主成分求解的过程来看,PCA还可以用来降维

3.算法原理

1、协方差原理
样本X和样本Y的协方差(Covariance):
这里写图片描述
协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。Cov(X,X)就是X的方差(Variance)。当样本是n维数据时,它们的协方差实际上是协方差矩阵(对称方阵),方阵的边长是Cn2。比如对于3维数据(x,y,z),计算它的协方差就是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值