416. Partition Equal Subset Sum

本文探讨了如何判断一个正整数数组是否可以被分割成两个子集,使得这两个子集的元素之和相等。文章首先介绍了问题背景,并通过示例进行了说明。随后提出了一种基于动态规划的方法来解决这一问题,包括详细的算法步骤和实现代码。
Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Note:
  1. Each of the array element will not exceed 100.
  2. The array size will not exceed 200.
Example 1:
Input: [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:
Input: [1, 2, 3, 5]

Output: false

Explanation: The array cannot be partitioned into equal sum subsets.


是否能把数组分成和相等的两部分
其实也就是求是否能从数组中取出一些数字 使他们的和为sum/2 其中sum是数组全部数字的和 
一开始想法有点乱 想到了2sum 对于这道题 需要一直求到(n-1)sum 其中n是数字的个数 
后来想到0/1背包问题 对于每一个数字 只有两种选择 取或者不取

    public boolean canPartition(int[] nums) {
        int sum = 0;
        for (int n : nums) {
            sum += n;
        }
        if (sum % 2 != 0) return false;
        Arrays.sort(nums);
        return part(nums, 0, sum/2);
    }
    
    public boolean part(int[] nums, int index, int target) {
        if (target == 0) return true;
        if (target < 0) return false;
        for (int i = index; i < nums.length; i++) {
            if (part(nums, i+1, target-nums[i]) || part(nums, i+1, target)) return true;
        }
        return false;
    }
然而 超时了… 时间复杂度O(n^n)

想到了dynamic programming 但是想不出来最优子结构
以下是discuss中的top1
public boolean canPartition(int[] nums) {
    int sum = 0;
    
    for (int num : nums) {
        sum += num;
    }
    
    if ((sum & 1) == 1) {
        return false;
    }
    sum /= 2;

    int n = nums.length;
    boolean[][] dp = new boolean[n+1][sum+1];
    for (int i = 0; i < dp.length; i++) {
        Arrays.fill(dp[i], false);
    }
    
    dp[0][0] = true;
    
    for (int i = 1; i < n+1; i++) {
        dp[i][0] = true;//任意前i个数字 都可以使sum=0 就是都不取呗
    }
    for (int j = 1; j < sum+1; j++) {
        dp[0][j] = false;//前0个数字 做不到sum>0
    }
    //对于前i个数字 尝试是否能达成sum=j
    for (int i = 1; i < n+1; i++) {
        for (int j = 1; j < sum+1; j++) {
            dp[i][j] = dp[i-1][j];
            if (j >= nums[i-1]) {
                dp[i][j] = (dp[i][j] || dp[i-1][j-nums[i-1]]);
            }
        }
    }
   
    return dp[n][sum];
}

其中dp[i][j]表示使用前i个数字 是否能使sum=j
比如输入是1,5,11,5 双层for循环 流程是这样的
先尝试前1个数字 是否能达成sum=1,2,3…11
然后尝试前2个数字 是否能达成sum=1,2,3...11
前4个数字 是否能达成sum=1,2,3…11

另外 最优子结构中  dp[i][j] = (dp[i][j] || dp[i-1][j-nums[i-1]]);
i只用到了前一行 也就是i-1的计算结果 所以空间复杂度可以再优化
public boolean canPartition(int[] nums) {
    int sum = 0;
    
    for (int num : nums) {
        sum += num;
    }
    
    if ((sum & 1) == 1) {
        return false;
    }
    sum /= 2;
    
    int n = nums.length;
    boolean[] dp = new boolean[sum+1];
    Arrays.fill(dp, false);
    dp[0] = true;
    
    for (int num : nums) {
        for (int i = sum; i > 0; i--) {
            if (i >= num) {
                dp[i] = dp[i] || dp[i-num];
            }
        }
    }
    
    return dp[sum];
}




Write a C program that can be run in the Microsoft Visual Studio to partitions a hypergraph G = (V, E) into 2 partitions. The Assignment Write a computer program that takes a netlist represented by a weighted hypergraph and partitions it into two partitions. Each node is associated with an area value and each edge has an edge cost. Your program should minimize the total cost of the cut set, while satisfying the area constraint that the total area of partition 1 should satisfy the balance criteria as described in the class. That is, if the area sum of all the nodes is A, then the area of partition 1 should be greater than or equal to ra-tio_factor *A – amax and less than or equal to ratio_factor *A + amax, where amax is the maximum value among all cell areas. The program should prompt the user for the value of ratio_factor. Assumptions and Requirements of the Implementation 1. Your program should not have any limitation on the maximum number of nodes and the edges of the hypergraph. Each hyperedge could connect any subset of nodes in the hypergraph. 2. Each node area is a non-negative integer, and each edge cost is a non-negative floating- point value. 3. All the ids are 0-based. Namely, the id of the first element is 0, instead of 1. 4. The output of each partition should include the list of node ids, sorted in the ascending order. 5. The partition with the smaller minimum node id is listed first in the output. 6. Use balance criteria as the tiebreaker when there are multiple cell moves giving the max-imum gain, as described in the class. 7. Use the input and output formats given in the Sample Test Cases section. Sample Test Cases Test1: Please enter the number of nodes: 4 Please enter each of the 4 nodes with its id and the node area: 0 1 1 1 2 1 3 1 Please enter the number of edges: 3 Please enter each of the 3 edges with the number of connected nodes and their node ids, followed by the edge cost: 2 0 1 1 2 1 2 3 2 2 3 1 Please enter the percentage of the ratio factor: 50 The node ids of the partition 0 are 0 The node ids of the partition 1 are 1, 2, 3 The total cut cost is 1 Test2: Please enter the number of nodes: 4 Please enter each of the 4 nodes with its id and the node area: 0 1 1 4 2 2 3 1 Please enter the number of edges: 3 Please enter each of the 3 edges with the number of connected nodes and their node ids, followed by the edge cost: 3 0 1 2 5 3 0 2 3 3 3 0 1 3 4 Please enter the percentage of ratio factor: 50 The node ids of the partition 0 are 3 The node ids of the partition 1 are 0, 1, 2 The total cut cost is 7
最新发布
07-08
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值