236. Lowest Common Ancestor of a Binary Tree

本文介绍了一种寻找二叉树中两个指定节点的最低公共祖先(LCA)的算法。通过两种方法实现:一种利用栈和哈希映射进行迭代;另一种采用递归方式,更为高效。详细解析了每种方法的工作原理。
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
        _______3______
       /              \
    ___5__          ___1__
   /      \        /      \
   6      _2       0       8
         /  \
         7   4

For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

找两棵树的最低父节点
自己做出来了一个递归的解法 但是stackoverflow了 testcase的树深度特别大 下面的解法会占用大量内存 但是可以通过testcase 
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    Map<TreeNode, TreeNode> parent = new HashMap<>();
    Deque<TreeNode> stack = new ArrayDeque<>();
    parent.put(root, null);
    stack.push(root);

    while (!parent.containsKey(p) || !parent.containsKey(q)) {
        TreeNode node = stack.pop();
        if (node.left != null) {
            parent.put(node.left, node);
            stack.push(node.left);
        }
        if (node.right != null) {
            parent.put(node.right, node);
            stack.push(node.right);
        }
    }
    Set<TreeNode> ancestors = new HashSet<>();
    while (p != null) {
        ancestors.add(p);
        p = parent.get(p);
    }
    while (!ancestors.contains(q))
        q = parent.get(q);
    return q;
}
遍历整棵树把对应关系存入parent key是节点 value是父节点 
然后获取p的所有父节点 对q 从下到上逐层获取父节点 找到第一个与p的公共父节点 也就是最低的公共父节点 

下面是递归的解法
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    if(root == null || root == p || root == q)  return root;//1.
    TreeNode left = lowestCommonAncestor(root.left, p, q);
    TreeNode right = lowestCommonAncestor(root.right, p, q);
    if(left != null && right != null)   return root;//2.
    return left != null ? left : right;//3.
}

效率比较高 但是之前觉得不是很好理解
四个月之后再看 感觉也不难理解
1.如果p是根节点 那么直接返回 因为q肯定是p的子节点
2.如果在当前节点下找到了p和q 那当前节点就是最低父节点 返回即可
3.如果在当前节点下 没找到q 那说明q是p的子节点 返回p即可 


以下是C#中二叉树的lowest common ancestor的源代码: ```csharp using System; public class Node { public int value; public Node left; public Node right; public Node(int value) { this.value = value; this.left = null; this.right = null; } } public class BinaryTree { public Node root; public BinaryTree() { this.root = null; } public Node LowestCommonAncestor(Node node, int value1, int value2) { if (node == null) { return null; } if (node.value == value1 || node.value == value2) { return node; } Node left = LowestCommonAncestor(node.left, value1, value2); Node right = LowestCommonAncestor(node.right, value1, value2); if (left != null && right != null) { return node; } return (left != null) ? left : right; } } public class Program { public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); Node lca = tree.LowestCommonAncestor(tree.root, 4, 5); Console.WriteLine("Lowest Common Ancestor of 4 and 5: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 4, 6); Console.WriteLine("Lowest Common Ancestor of 4 and 6: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 3, 4); Console.WriteLine("Lowest Common Ancestor of 3 and 4: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 2, 4); Console.WriteLine("Lowest Common Ancestor of 2 and 4: " + lca.value); } } ``` 在上面的代码中,我们定义了一个Node类和一个BinaryTree类。我们使用BinaryTree类来创建二叉树,并实现了一个LowestCommonAncestor方法来计算二叉树中给定两个节点的最近公共祖先。 在LowestCommonAncestor方法中,我们首先检查给定节点是否为null或与给定值之一匹配。如果是,则返回该节点。否则,我们递归地在左子树和右子树上调用LowestCommonAncestor方法,并检查它们的返回值。如果左子树和右子树的返回值都不为null,则当前节点是它们的最近公共祖先。否则,我们返回非null的那个子树的返回值。 在Main方法中,我们创建了一个二叉树,并测试了LowestCommonAncestor方法的几个不同输入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值