A message containing letters from A-Z is
being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).
The number of ways decoding "12" is
2.
想到了用recursion 每次都decode到最后 超时 因为有重复运算 应该用dynamic programming
而且不需要递归 for循环就行
第二遍做 还是不行 感觉分割之间应该是乘法的关系
比如 1234
result = decode(1)*decode(234) + decode(12)*decode(34) 但这TM不是一个递推表达式啊
用decode(i)代表num.substring(0,i)的结果 那么decode(i)与decode(i-1) 之间的关系可以用加法表示
递推表达式表示的 不是分割开的各段之间的关系 因为也没有办法表示 可以1 也可以12组合 不能直接确定起点,终点
表示的是 固定起点 不同长度之间的关系
dp问题都是这样 想出递推公式 就差不多了
I used a dp array of size n + 1 to save subproblem solutions. dp[0] means an empty string will have one way to decode, dp[1]means the way to decode a string of size 1. I then check one digit and two digit combination and save the results along the way. In the end, dp[n] will be the end result.
public class Solution {
public int numDecodings(String s) {
if(s == null || s.length() == 0) {
return 0;
}
int n = s.length();
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = s.charAt(0) != '0' ? 1 : 0;
for(int i = 2; i <= n; i++) {
int first = Integer.valueOf(s.substring(i-1, i));
int second = Integer.valueOf(s.substring(i-2, i));
if(first >= 1 && first <= 9) {
dp[i] += dp[i-1];
}
if(second >= 10 && second <= 26) {
dp[i] += dp[i-2];
}
}
return dp[n];
}
}