基于A股市场情绪的投资建议

声名!!!

***情绪是检验市场的唯一标准***

***思路可以适配easytrader,可以作量化的特色指标,可以根据市场情绪进行交易***

Statement!!!

***Sentiment is the only test of the market***

***Thoughts can be adapted to easytrader, which can be used as a quantitative feature indicator and can be traded according to market sentiment***

日后会更新一个筛子,大伙保持持续关注!祝大伙在A股兴风作浪!!!

直接贴轮子!

若有报错或者问题可以联系wx: have1000000000000rmb

import pandas as pd
from bs4 import BeautifulSoup
from xml import etree
import json
import jsonpath
from fpdf import FPDF
import requests
import os
import time
import PySimpleGUI as sg
import matplotlib.pyplot as plt
import akshare as ak
from pyecharts import charts
from pyecharts import options as options
import tkinter as tk
root=tk.Tk()
root.title('情绪系统')
root.geometry('600x500')
menumode=tk.Menu(root)
rq_rank=tk.Menu(menumode)
menumode.add_cascade(label='情绪与市场热度',menu=rq_rank)
#A股情绪与市场热度
def rq_rank_china():
    '''
    A股情绪与市场热度
    '''
    url1='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=0.000957,1.600006,1.600313,0.000665,0.000625,0.000151,1.600354,0.002181,0.000595,0.002761,0.000025,1.601127,1.600127,0.000756,0.000868,1.600101,1.600268,0.300750,0.002594,0.002121&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654071182268'
    res1=requests.get(url1)
    text1=res1.text[28:len(res1.text)-2]
    json_text1=json.loads(text1)
    df1=pd.DataFrame(json_text1['data']['diff'])
    url2='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=0.000572,1.600297,0.000722,0.001318,0.000767,0.002561,0.002292,1.601633,0.002432,0.000523,1.600733,0.300059,0.002045,1.600158,0.002189,1.600062,0.000909,1.600960,1.600502,0.002241&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654071562097'
    res2=requests.get(url2)
    text2=res2.text[28:len(res2.text)-2]
    json_text2=json.loads(text2)
    df2=pd.DataFrame(json_text2['data']['diff'])
    url3='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=0.002183,1.601975,0.000716,1.601872,1.600058,1.600418,0.002613,0.002074,1.600550,1.601238,1.603069,0.002060,0.002066,0.002265,1.600026,1.600081,1.600283,0.300014,1.600284,0.002957&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654071777874'
    res3=requests.get(url3)
    text3=res3.text[28:len(res3.text)-2]
    json_text3=json.loads(text3)
    df3=pd.DataFrame(json_text3['data']['diff'])
    url4='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=0.000547,1.600546,0.000029,0.000521,0.002699,0.000524,0.002235,0.000009,1.603097,1.600096,1.605366,0.002400,0.000886,0.000735,1.600686,0.002466,0.000736,1.600238,0.002277,0.001319&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654071925167'
    res4=requests.get(url4)
    text4=res4.text[28:len(res4.text)-2]
    json_text4=json.loads(text4)
    df4=pd.DataFrame(json_text4['data']['diff'])
    url5='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=0.000547,1.600546,0.000029,0.000521,0.002699,0.000524,0.002235,0.000009,1.603097,1.600096,1.605366,0.002400,0.000886,0.000735,1.600686,0.002466,0.000736,1.600238,0.002277,0.001319&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654071925167'
    res5=requests.get(url5)
    text5=res5.text[28:len(res5.text)-2]
    json_text5=json.loads(text5)
    df5=pd.DataFrame(json_text5['data']['diff'])
    df=pd.concat([df1,df2,df3,df4,df5],ignore_index=True)
    columns=['-','last','increase','Quota','Code','Change in ranking from yesterday','name','-','-','-']
    df.columns=columns
    data=df[['name','last','increase','Quota','Code','Change in ranking from yesterday']]
    data.to_excel(r'C:\Users\Administrator\Desktop\建议.xlsx')
    print(data)

def rq_rank_hk():
    '''
   
    '''
    url1='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.00700,116.01877,116.03690,116.01810,116.09988,116.00981,116.00175,116.02333,116.01211,116.01024,116.00719,116.01772,116.01919,116.00883,116.02238,116.02318,116.09618,116.00020,116.02899,116.03968&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654072693918'
    res1=requests.get(url1)
    text1=res1.text[28:len(res1.text)-2]
    json_text1=json.loads(text1)
    df1=pd.DataFrame(json_text1['data']['diff'])
    url2='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.09939,116.02359,116.00763,116.09992,116.02269,116.06185,116.02137,116.09868,116.02196,116.00493,116.06969,116.06030,116.09888,116.01088,116.03800,116.00941,116.02202,116.00316,116.02048,116.03606&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654072726971'
    res2=requests.get(url2)
    text2=res2.text[28:len(res2.text)-2]
    json_text2=json.loads(text2)
    df2=pd.DataFrame(json_text2['data']['diff'])
    url3='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.01171,116.03333,116.02007,116.01138,116.00285,116.06862,116.01093,116.00305,116.06158,116.00388,116.02015,116.00241,116.01951,116.00853,116.09999,116.06186,116.03669,116.00386,116.06618,116.01516&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654072760208'
    res3=requests.get(url3)
    text3=res3.text[28:len(res3.text)-2]
    json_text3=json.loads(text3)
    df3=pd.DataFrame(json_text3['data']['diff'])
    url4='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.01347,116.09926,116.02382,116.02380,116.06078,116.02338,116.01177,116.01776,116.01801,116.02331,116.02618,116.02197,116.03323,116.02150,116.00728,116.06160,116.02600,116.00914,116.00902,116.01918&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654072792119'
    res4=requests.get(url4)
    text4=res4.text[28:len(res4.text)-2]
    json_text4=json.loads(text4)
    df4=pd.DataFrame(json_text4['data']['diff'])
    url5='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.00460,116.09866,116.02423,116.01658,116.00881,116.00059,116.00189,116.00857,116.02020,116.06690,116.09626,116.01186,116.00489,116.09633,116.00836,116.01898,116.02607,116.01988,116.03996,116.02013&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654072820468'
    res5=requests.get(url5)
    text5=res5.text[28:len(res5.text)-2]
    json_text5=json.loads(text5)
    df5=pd.DataFrame(json_text5['data']['diff'])
    df=pd.concat([df1,df2,df3,df4,df5],ignore_index=True)
    columns=['-','last','increase','Quota','Code','-','name','TOP','low','-']
    df.columns=columns
    data=df[['name','last','increase','Quota','Code','TOP','low']]
    data.to_excel(r'C:\Users\Administrator\Desktop\建议.xlsx')
    print(data)

def rq_rank_us():
    '''
   
    '''
    url1='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=105.AAPL,106.BABA,105.TSLA,105.JD,105.PDD,106.NIO,106.BEKE,106.XPEV,105.LI,106.EDU,106.SQM,105.AMZN,105.BILI,105.BIDU,106.ZTO,106.DIDI,105.FFIE,105.NTES,106.ALB,106.OXY&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654073086913'
    res1=requests.get(url1)
    text1=res1.text[28:len(res1.text)-2]
    json_text1=json.loads(text1)
    df1=pd.DataFrame(json_text1['data']['diff'])
    url2='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=105.NVDA,105.MSFT,105.IQ,105.NEGG,105.FB,106.PFE,106.JKS,105.NDAQ,105.TCOM,105.BGNE,106.MOS,106.MSC,106.PTR,105.GOOGL,106.TSM,105.KC,106.JPM,105.TXMD,106.ACH,105.SVA&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654073114477'
    res2=requests.get(url2)
    text2=res2.text[28:len(res2.text)-2]
    json_text2=json.loads(text2)
    df2=pd.DataFrame(json_text2['data']['diff'])
    url3='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=106.TAL,105.QCOM,106.DAO,106.KO,106.RBLX,106.BRK_A,106.HNP,106.AA,105.REDU,106.DQ,105.AMD,106.SNP,106.RLX,105.NFLX,105.GOOG,105.MOMO,105.SIGA,107.TKAT,105.AVGO,106.TME&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654073328523'
    res3=requests.get(url3)
    text3=res3.text[28:len(res3.text)-2]
    json_text3=json.loads(text3)
    df3=pd.DataFrame(json_text3['data']['diff'])
    url4='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=105.CPOP,106.HUYA,105.INTC,105.BZ,106.YMM,106.BTU,105.IMAB,106.COP,106.GME,106.MS,106.SWN,106.X,106.MRK,106.CVX,106.LAC,106.XOM,105.BNTX,106.BA,105.DADA,106.ATHM&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654073284004'
    res4=requests.get(url4)
    text4=res4.text[28:len(res4.text)-2]
    json_text4=json.loads(text4)
    df4=pd.DataFrame(json_text4['data']['diff'])
    url5='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=106.NKE,105.AIH,105.IFRX,106.TWTR,106.WMT,106.LTHM,106.VIPS,106.DDL,106.BAC,105.MRNA,106.BTCM,106.ZIM,106.HPQ,106.QD,106.CEA,106.JNJ,105.UPC,106.ZH,105.MU,105.FUTU&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654073308450'
    res5=requests.get(url5)
    text5=res5.text[28:len(res5.text)-2]
    json_text5=json.loads(text5)
    df5=pd.DataFrame(json_text5['data']['diff'])
    df=pd.concat([df1,df2,df3,df4,df5],ignore_index=True)
    columns=['-','last','increase','Quota','Code','-','name','TOP','low','-']
    df.columns=columns
    data=df[['name','last','increase','Quota','Code','TOP','low']]
    data.to_excel(r'C:\Users\Administrator\Desktop\建议.xlsx')
    print(data)
rq_rank.add_command(label='A股市场情绪与市场热度',command=rq_rank_china)
rq_rank.add_command(label='港股市场情绪与市场热度',command=rq_rank_hk)
rq_rank.add_command(label='美股市场情绪与市场热度',command=rq_rank_us)
rq_bs_rank=tk.Menu(menumode)
menumode.add_cascade(label='股票情绪',menu=rq_bs_rank)

def rq_bs_rank_china():
    '''

    '''
    url1='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=0.002998,1.688258,1.688329,1.688288,1.688367,1.605005,0.838030,1.688056,1.688511,0.002296,1.688345,1.688718,1.605299,1.603308,1.688197,1.600215,0.300731,0.300516,0.002575,0.300920&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654090163841'
    res1=requests.get(url1)
    text1=res1.text[28:len(res1.text)-2]
    json_text1=json.loads(text1)
    df1=pd.DataFrame(json_text1['data']['diff'])
    url2='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=1.600114,0.300705,0.000584,0.002651,1.603167,0.300795,1.600246,0.002970,0.002868,1.605266,0.300890,0.002819,0.300588,1.603700,1.688302,0.002829,0.300048,0.300610,0.002886,0.002918&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654090187425'
    res2=requests.get(url2)
    text2=res2.text[28:len(res2.text)-2]
    json_text2=json.loads(text2)
    df2=pd.DataFrame(json_text2['data']['diff'])
    url3='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=0.002674,1.688529,0.300580,0.002376,0.002491,1.688148,1.600847,0.003029,0.002147,0.002791,1.600386,0.300742,1.688772,1.688613,0.002785,0.000668,0.002813,0.002859,1.603315,1.688597&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654090210712'
    res3=requests.get(url3)
    text3=res3.text[28:len(res3.text)-2]
    json_text3=json.loads(text3)
    df3=pd.DataFrame(json_text3['data']['diff'])
    url4='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=1.688021,1.603016,0.300710,0.300990,1.688232,1.688277,1.600936,1.688601,0.300813,1.688567,0.002154,1.603987,0.300565,1.603926,1.688162,1.688626,0.002196,0.002264,1.605028,0.002940&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654090235331'
    res4=requests.get(url4)
    text4=res4.text[28:len(res4.text)-2]
    json_text4=json.loads(text4)
    df4=pd.DataFrame(json_text4['data']['diff'])
    url5='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=0.300911,0.300275,0.000576,1.603997,1.688266,1.688058,0.300370,0.002042,0.002598,0.300473,1.603680,0.300480,1.601107,1.603877,1.688676,0.002076,0.300196,1.688320,1.605336,0.300680&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654090268847'
    res5=requests.get(url5)
    text5=res5.text[28:len(res5.text)-2]
    json_text5=json.loads(text5)
    df5=pd.DataFrame(json_text5['data']['diff'])
    df=pd.concat([df1,df2,df3,df4,df5],ignore_index=True)
    columns=['-','last','increase','Quota','Code','Change in ranking from yesterday','name','-','-','-']
    df.columns=columns
    data=df[['name','last','increase','Quota','Code','Change in ranking from yesterday']]
    data.to_excel(r'C:\Users\Administrator\Desktop\建议.xlsx')
    print(data)

def rq_bs_rank_hk():
    '''
 
    '''
    url1='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.01180,116.08249,116.01452,116.08239,116.00483,116.01855,116.08148,116.01059,116.08267,116.01663,116.02448,116.01429,116.00718,116.08350,116.02683,116.08613,116.08281,116.00118,116.00088,116.01632&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654087816027'
    res1=requests.get(url1)
    text1=res1.text[28:len(res1.text)-2]
    json_text1=json.loads(text1)
    df1=pd.DataFrame(json_text1['data']['diff'])
    url2='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.01699,116.01527,116.01752,116.00289,116.01319,116.00638,116.03395,116.08091,116.08201,116.08181,116.08519,116.01701,116.00062,116.06819,116.00865,116.08326,116.00650,116.01130,116.08430,116.08213&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654087842899'
    res2=requests.get(url2)
    text2=res2.text[28:len(res2.text)-2]
    json_text2=json.loads(text2)
    df2=pd.DataFrame(json_text2['data']['diff'])
    url3='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.01705,116.00574,116.01027,116.03638,116.00032,116.00105,116.01460,116.03869,116.01596,116.01780,116.08623,116.01707,116.00051,116.01271,116.00690,116.01062,116.00973,116.01980,116.08428,116.02108&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654087878145'
    res3=requests.get(url3)
    text3=res3.text[28:len(res3.text)-2]
    json_text3=json.loads(text3)
    df3=pd.DataFrame(json_text3['data']['diff'])
    url4='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.00157,116.09908,116.01680,116.01416,116.01031,116.01657,116.02111,116.02025,116.01232,116.00110,116.02188,116.00252,116.08297,116.00928,116.01977,116.00687,116.00030,116.08348,116.01329,116.01239&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654087907041'
    res4=requests.get(url4)
    text4=res4.text[28:len(res4.text)-2]
    json_text4=json.loads(text4)
    df4=pd.DataFrame(json_text4['data']['diff'])
    url5='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=116.00052,116.08179,116.03737,116.00174,116.00158,116.00184,116.00899,116.00033,116.08150,116.00239,116.08401,116.00114,116.00247,116.08147,116.01285,116.08229,116.06822,116.00240,116.08205,116.00897&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654087931250'
    res5=requests.get(url5)
    text5=res5.text[28:len(res5.text)-2]
    json_text5=json.loads(text5)
    df5=pd.DataFrame(json_text5['data']['diff'])
    df=pd.concat([df1,df2,df3,df4,df5],ignore_index=True)
    columns=['-','last','increase','Quota','Code','-','name','TOP','low','-']
    df.columns=columns
    data=df[['name','last','increase','Quota','Code','TOP','low']]
    data.to_excel(r'C:\Users\Administrator\Desktop\建议.xlsx')
    print(data)

def rq_bs_rank_us():
    '''
    
    '''
    url1='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=105.AAPL,106.BABA,105.TSLA,105.JD,105.LI,106.NIO,106.XPEV,105.PDD,106.BEKE,106.SQM,105.BIDU,106.EDU,105.AMZN,105.BILI,105.FFIE,105.NEGG,106.ZTO,105.NTES,106.ALB,106.DIDI&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654088423625'
    res1=requests.get(url1)
    text1=res1.text[28:len(res1.text)-2]
    json_text1=json.loads(text1)
    df1=pd.DataFrame(json_text1['data']['diff'])
    url2='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=105.NVDA,105.MSFT,105.FB,106.OXY,105.SVA,105.TCOM,106.PFE,106.JKS,105.IQ,106.PTR,105.GOOGL,105.BGNE,106.MOS,105.NDAQ,106.TSM,106.JPM,106.KO,106.TAL,105.AMD,106.MSC&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654088449840'
    res2=requests.get(url2)
    text2=res2.text[28:len(res2.text)-2]
    json_text2=json.loads(text2)
    df2=pd.DataFrame(json_text2['data']['diff'])
    url3='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=105.KC,106.RLX,105.GOOG,107.TKAT,105.TXMD,105.WB,106.ACH,106.DQ,106.COP,106.AA,105.SIGA,105.QCOM,106.RBLX,106.SWN,106.CVX,106.BRK_A,105.NFLX,106.XOM,106.TME,105.BNTX&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654088479035'
    res3=requests.get(url3)
    text3=res3.text[28:len(res3.text)-2]
    json_text3=json.loads(text3)
    df3=pd.DataFrame(json_text3['data']['diff'])
    url4='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=106.GME,106.CEA,106.LAC,106.LTHM,106.SNP,106.BA,106.BTU,105.IMAB,106.YMM,105.INTC,106.HNP,105.AVGO,105.MOMO,105.MRNA,105.REDU,106.TWTR,106.DAO,106.MRK,106.WMT,105.BZ&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654088513403'
    res4=requests.get(url4)
    text4=res4.text[28:len(res4.text)-2]
    json_text4=json.loads(text4)
    df4=pd.DataFrame(json_text4['data']['diff'])
    url5='https://push2.eastmoney.com/api/qt/ulist.np/get?fltt=2&np=3&ut=a79f54e3d4c8d44e494efb8f748db291&invt=2&secids=105.COST,106.ATHM,106.NKE,106.GS,106.BAC,105.IFRX,106.DDL,105.CPOP,106.CRM,105.MU,106.JNJ,105.AIH,106.X,105.DADA,106.BTCM,106.HUYA,106.VIPS,106.ZIM,105.MF,106.FMC&fields=f1,f2,f3,f4,f12,f13,f14,f152,f15,f16&cb=qa_wap_jsonpCB1654088534731'
    res5=requests.get(url5)
    text5=res5.text[28:len(res5.text)-2]
    json_text5=json.loads(text5)
    df5=pd.DataFrame(json_text5['data']['diff'])
    df=pd.concat([df1,df2,df3,df4,df5],ignore_index=True)
    columns=['-','last','increase','Quota','Code','-','name','TOP','low','-']
    df.columns=columns
    data=df[['name','last','increase','Quota','Code','TOP','low']]
    data.to_excel(r'C:\Users\Administrator\Desktop\建议.xlsx')
    print(data)
rq_bs_rank.add_command(label='A股情绪位次',command=rq_bs_rank_china)
rq_bs_rank.add_command(label='港股情绪位次',command=rq_bs_rank_hk)
rq_bs_rank.add_command(label='美股情绪位次',command=rq_bs_rank_us)
ths_rq_rank=tk.Menu(menumode)
menumode.add_cascade(label='情绪与市场热度',menu=ths_rq_rank)

def ths_wc_rank_stock():
    '''

    '''
    date=sg.popup_get_text('输入时间比如20220605')
    df=ak.stock_hot_rank_wc(date=date)
    df.to_excel(r'C:\Users\Administrator\Desktop\建议.xlsx')
    print(df)
ths_rq_rank.add_command(label='情绪与市场热度',command=ths_wc_rank_stock)
root['menu']=menumode
root.mainloop()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大飞178

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值