递推(dp)-HDU5366

本文介绍了如何解决HDU5366问题,即在长度为n的砖墙上合法放置木桩。ZJiaQ希望两木桩间距离至少为2,求所有可能的放置方式。给出的状态转移方程是dp[i]=dp[i-1]+dp[i-3]+1,其中dp[i]表示到第i个位置的合法方案数。讨论了dp[i-1]和dp[i-3]的含义,并解释了为何要加1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5366

Problem Description

ZJiaQ want to become a strong man, so he decided to play the mook jong。ZJiaQ want to put some mook jongs in his backyard. His backyard consist of n bricks that is 1*1,so it is 1*n。ZJiaQ want to put a mook jong in a brick. because of the hands of the mook jong, the distance of two mook jongs should be equal or more than 2 bricks. Now ZJiaQ want to know how many ways can ZJiaQ put mook jongs legally(at least one mook jong).
Input
There ar multiply cases. For each case, there is a single integer n( 1 < = n < = 60)
Output
Print the ways in a single line for each case.
Sample Input
1
2
3
4
5
6
Sample Output
1
2
3
5
8
12

题解:

状态转移方程: dp[i]=dp[i-1]+dp[i-3]+1。
dp[i]的含义是到i这个位置为止,有多少种方案数,也就是答案。因为dp表示的是合法的解,所以之前一定已经至少放了一个木桩了。dp[i-1]代表的是当前位置i不放木桩,dp[i-3]代表的是当前位置放,因为间隔为2,所以不论前面第三个位置有没有,当前位置i都可以放置1个木桩,至于最后加上的一个1,它代表的是前面i-1个位置都没放置木桩,而在当前位置i放置一个木桩,这也是一组合法的解,故加上1。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll a[100];
int main()
{
    a[1]=1;a[2]=2;a[3]=3;
    for(int i=4;i<=60;i++)
    {
        a[i]=a[i-3]+a[i-1]+1;
    }
    int n;
    while(~scanf("%d",&n))
    {
        printf("%I64d\n",a[n]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值