最短路径即从一个顶点到达另一个顶点成本最小的路径,例如利用导航软件获取从一个地方到达另一个地方的路径,顶点对应路口,边对应公路,边的权重对应经过该路段的成本,可以是时间或距离,如果有单行线,那就要考虑加权有向图。
加权有向图的数据结构实现如下
public class EdgeWeightedDigraph {
private static final String NEWLINE = System.getProperty("line.separator");
private final int V; // number of vertices in this digraph
private int E; // number of edges in this digraph
private Bag<DirectedEdge>[] adj; // adj[v] = adjacency list for vertex v
private int[] indegree; // indegree[v] = indegree of vertex v
/**
* Initializes an empty edge-weighted digraph with {@code V} vertices and 0 edges.
*
* @param V the number of vertices
* @throws IllegalArgumentException if {@code V < 0}
*/
public EdgeWeightedDigraph(int V) {
if (V < 0) throw new IllegalArgumentException("Number of vertices in a Digraph must be nonnegative");
this.V = V;
this.E = 0;
this.indegree = new int[V];
adj = (Bag<DirectedEdge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>();
}
/**
* Initializes a random edge-weighted digraph with {@code V} vertices and <em>E</em> edges.
*
* @param V the number of vertices
* @param E the number of edges
* @throws IllegalArgumentException if {@code V < 0}
* @throws IllegalArgumentException if {@code E < 0}
*/
public EdgeWeightedDigraph(int V, int E) {
this(V);
if (E < 0) throw new IllegalArgumentException("Number of edges in a Digraph must be nonnegative");
for (int i = 0; i < E; i++) {
int v = StdRandom.uniform(V);
int w = StdRandom.uniform(V);
double weight = 0.01 * StdRandom.uniform(100);
DirectedEdge e = new DirectedEdge(v, w, weight);
addEdge(e);
}
}
/**
* Initializes an edge-weighted digraph from the specified input stream.
* The format is the number of vertices <em>V</em>,
* followed by the number of edges <em>E</em>,
* followed by <em>E</em> pairs of vertices and edge weights,
* with each entry separated by whitespace.
*
* @param in the input stream
* @throws IllegalArgumentException if the endpoints of any edge are not in prescribed range
* @throws IllegalArgumentException if the number of vertices or edges is negative
*/
public EdgeWeightedDigraph(In in) {
this(in.readInt());
int E = in.readInt();
if (E < 0) throw new IllegalArgumentException("Number of edges must be nonnegative");
for (int i = 0; i < E; i++) {
int v = in.readInt();
int w = in.readInt();
validateVertex(v);
validateVertex(w);
double weight = in.readDouble();
addEdge(new DirectedEdge(v, w, weight));
}
}
/**
* Initializes a new edge-weighted digraph that is a deep copy of {@code G}.
*
* @param G the edge-weighted digraph to copy
*/
public EdgeWeightedDigraph(EdgeWeightedDigraph G) {
this(G.V());
this.E = G.E();
for (int v = 0; v < G.V(); v++)
this.indegree[v] = G.indegree(v);
for (int v = 0; v < G.V(); v++) {
// reverse so that adjacency list is in same order as original
Stack<DirectedEdge> reverse = new Stack<DirectedEdge>();
for (DirectedEdge e : G.adj[v]) {
reverse.push(e);
}
for (DirectedEdge e : reverse) {
adj[v].add(e);
}
}
}
/**
* Returns the number of vertices in this edge-weighted digraph.
*
* @return the number of vertices in this edge-weighted digraph
*/
public int V() {
return V;
}
/**
* Returns the number of edges in this edge-weighted digraph.
*
* @return the number of edges in this edge-weighted digraph
*/
public int E() {
return E;
}
// throw an IllegalArgumentException unless {@code 0 <= v < V}
private void validateVertex(int v) {
if (v < 0 || v >= V)
throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
}
/**
* Adds the directed edge {@code e} to this edge-weighted digraph.
*
* @param e the edge
* @throws IllegalArgumentException unless endpoints of edge are between {@code 0}
* and {@code V-1}
*/
public void addEdge(DirectedEdge e) {
int v = e.from();
int w = e.to();
validateVertex(v);
validateVertex(w);
adj[v].add(e);
indegree[w]++;
E++;
}
/**
* Returns the directed edges incident from vertex {@code v}.
*
* @param v the vertex
* @return the directed edges incident from vertex {@code v} as an Iterable
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public Iterable<DirectedEdge> adj(int v) {
validateVertex(v);
return adj[v];
}
/**
* Returns the number of directed edges incident from vertex {@code v}.
* This is known as the <em>outdegree</em> of vertex {@code v}.
*
* @param v the vertex
* @return the outdegree of vertex {@code v}
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public int outdegree(int v) {
validateVertex(v);
return adj[v].size();
}
/**
* Returns the number of directed edges incident to vertex {@code v}.
* This is known as the <em>indegree</em> of vertex {@code v}.
*
* @param v the vertex
* @return the indegree of vertex {@code v}
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public int indegree(int v) {
validateVertex(v);
return indegree[v];
}
/**
* Returns all directed edges in this edge-weighted digraph.
* To iterate over the edges in this edge-weighted digraph, use foreach notation:
* {@code for (DirectedEdge e : G.edges())}.
*
* @return all edges in this edge-weighted digraph, as an iterable
*/
public Iterable<DirectedEdge> edges() {
Bag<DirectedEdge> list = new Bag<DirectedEdge>();
for (int v = 0; v < V; v++) {
for (DirectedEdge e : adj(v)) {
list.add(e);
}
}
return list;
}
/**
* Returns a string representation of this edge-weighted digraph.
*
* @return the number of vertices <em>V</em>, followed by the number of edges <em>E</em>,
* followed by the <em>V</em> adjacency lists of edges
*/
public String toString() {
StringBuilder s = new StringBuilder();
s.append(V + " " + E + NEWLINE);
for (int v = 0; v < V; v++) {
s.append(v + ": ");
for (DirectedEdge e : adj[v]) {
s.append(e + " ");
}
s.append(NEWLINE);
}
return s.toString();
}
/**
* Unit tests the {@code EdgeWeightedDigraph} data type.
*