Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
class solution{
public:
void insertsort(vector<int>&a,int n)
{
int temp;
for(int i = 1;i <n;i++)
{
temp = a[i];
int j;
for(j = i;j>0&& temp<a[j-1] ;--j)
{
a[j] = a[j-1];
}
a[j] = temp;
}
}
vector< vector<int>> threeSum(vector<int>&num){
vector<vector<int>> res;
if (num.size() < 3)
return res;
//对原数组进行非递减(递增)排序
InsertSort(num, num.size());
for (int i = 0; i < num.size(); ++i)
{
//去重
if (i != 0 && num[i] == num[i - 1])
continue;
//如果num[i] = num[i - 1],说明刚才i-1时求的解在这次肯定也会求出一样的,所以直接跳过不求
int p = i + 1, q = num.size() - 1;
int sum = 0;
//夹逼法寻找第2,第3个数
while (p < q)
{
sum = num[i] + num[p] + num[q];
if (sum == 0)
{
vector<int> newRes;
newRes.push_back(num[i]);
newRes.push_back(num[p]);
newRes.push_back(num[q]);
insertsort(newRes, newRes.size());
res.push_back(newRes);
//寻找其他可能的两个数,顺带去重
//这个去重操作主要针对有多个同值的数组,如: {- 3, 1, 1, 1, 2, 2, 3, 4}
//当sum == 0,我们保存了当前解以后,需要num[i]在解中的其他的2个数组合,这个时候,肯定是p往后或者q往前,如果++p,发
//现其实num[p] == num[p - 1],说明这个解肯定和刚才重复了,再继续++p。同理,如果--q后发现num[q] == num[q + 1],继续--q。
while (++p < q && num[p - 1] == num[q])
{
//do nothing
}
while (--q > p && num[q + 1] == num[q])
{
//do nothing
}
}
else if (sum < 0) //sum太小,p向后移动
{
++p;
}
else //sum太大,q向前移动
{
--q;
}
}
}
return res;
}
};