99. Recover Binary Search Tree

本文探讨了在二叉搜索树中两个节点错误交换的情况下,如何在不改变树结构的前提下,通过O(n)和常数空间复杂度的方法恢复树的正确状态。提供了详细的算法实现,包括中序遍历和值排序步骤。

 

99. Recover Binary Search Tree

Hard

99658FavoriteShare

Two elements of a binary search tree (BST) are swapped by mistake.

Recover the tree without changing its structure.

Example 1:

Input: [1,3,null,null,2]

   1
  /
 3
  \
   2

Output: [3,1,null,null,2]

   3
  /
 1
  \
   2

Example 2:

Input: [3,1,4,null,null,2]

  3
 / \
1   4
   /
  2

Output: [2,1,4,null,null,3]

  2
 / \
1   4
   /
  3

Follow up:

  • A solution using O(n) space is pretty straight forward.
  • Could you devise a constant space solution?

Accepted

132,582

Submissions

366,722

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    void recoverTree(TreeNode* root) {
        vector<int> in;
        vector<TreeNode*> intrees;
        intra(root,in,intrees);
        sort(in.begin(),in.end());
        for(int i=0;i<in.size();i++){
        	intrees[i]->val=in[i];//直接对指针所指对象进行修改
        }

    }
    void intra(TreeNode* root,vector<int>& in,vector<TreeNode*>& intrees){
    	if(root==NULL) return;
    	intra(root->left,in,intrees);
    	in.push_back(root->val);
    	intrees.push_back(root);
    	intra(root->right,in,intrees);
    }
};

 

ECDSA.recover is a function in the ECDSA (Elliptic Curve Digital Signature Algorithm) cryptographic system that allows a user to recover the public key from a given signature and message. This function is useful in situations where the public key is unknown but the signature and message are available. The ECDSA algorithm involves three steps: key generation, signature generation, and signature verification. In the key generation step, a private key is generated using a random number generator, and the corresponding public key is derived from the private key. In the signature generation step, a message is hashed and signed using the private key to generate a signature. In the signature verification step, the signature is verified using the public key to ensure that it was generated by the owner of the private key. In some cases, the public key may not be available, but the signature and message are known. In such cases, the ECDSA.recover function can be used to recover the public key from the signature and message. The function takes three inputs: the message, the signature, and the recovery parameter. The recovery parameter is a number between 0 and 3 that specifies which of the four possible public keys should be recovered from the signature. Once the public key is recovered, it can be used to verify the signature and authenticate the message. Overall, ECDSA.recover is a useful function in the ECDSA cryptographic system that allows for public key recovery in situations where it is unknown but the signature and message are available.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值