SVD方法是模型降阶的一类重要方法,本征正交分解(POD)和平衡截断(BT)都属于SVD类方法。

要想深入了解模型降阶技术,我们可以先从SVD的应用入手,做一个直观的了解。
1. SVD的定义和分类




我们想寻找一个A的逼近:Ak,使得rank(Ak) = k < n,且|A - Ak|最小。
下面的定理(也称为Schmidt-Mirsky, Eckart-Young定理)说明矩阵A的低秩逼近可以用SVD实现:
SVD方法:模型降阶与图像压缩的应用详解
本文介绍了SVD(奇异值分解)在模型降阶中的应用,包括POD和BT方法,以及如何通过SVD进行图像压缩,如将RGB图像压缩到不同秩,展示了代码示例和图像压缩效果。
SVD方法是模型降阶的一类重要方法,本征正交分解(POD)和平衡截断(BT)都属于SVD类方法。

要想深入了解模型降阶技术,我们可以先从SVD的应用入手,做一个直观的了解。




我们想寻找一个A的逼近:Ak,使得rank(Ak) = k < n,且|A - Ak|最小。
下面的定理(也称为Schmidt-Mirsky, Eckart-Young定理)说明矩阵A的低秩逼近可以用SVD实现:
2701
867

被折叠的 条评论
为什么被折叠?