程序员弟弟逼我学算法,寄了个这个给我......

本书通过轻松幽默的方式介绍了二分查找算法,解释了其原理和优势,相较于线性查找,二分查找在查找有序列表时能显著提高效率,运行时间为对数时间。书中提供了Python代码示例,帮助读者深入理解算法实现。


普通程序员,不学算法,也可以成为大神吗?对不起,这个,绝对不可以。

可是算法好难啊~~看两页书就想睡觉……所以就不学了吗?就一直当普通程序员吗?

如果有一本算法书,看着很轻松……又有代码示例……又有讲解……

怎么会有那样的书呢?哎呀,最好学了算法人还能变得很萌……

这个……要求是不是太高了呀?哈哈,有的书真的能满足所有这些要求哦!

最近程序员弟弟就买了一本这么个算法书,没两天就寄给了我,说“姐,这本书非常适合你看,太简单啦,必须要看完哦”

他寄的就是这本非常卡通的算法书—《算法图解》。

下面就来给大家分享一下书籍里是怎么讲二分查找这个知识点的。


二分查找

假设要在电话簿中找一个名字以K打头的人,(现在谁还用电话簿!)可以从头开始翻页,直到进入以K打头的部分。但你很可能不这样做,而是从中间开始,因为你知道以K打头的名字在电话簿中间。

又假设要在字典中找一个以O打头的单词,你也将从中间附近开始。

现在假设你登录Facebook。当你这样做时,Facebook必须核实你是否有其网站的账户,因此必须在其数据库中查找你的用户名。如果你的用户名为karlmageddon,Facebook可从以A打头的部分开始查找,但更合乎逻辑的做法是从中间开始查找。

这是一个查找问题,在前述所有情况下,都可使用同一种算法来解决问题,这种算法就是二分查找。

二分查找是一种算法,其输入是一个有序的元素列表(必须有序的原因稍后解释)。如果要查找的元素包含在列表中,二分查找返回其位置;否则返回null。

下图是一个例子。

下面的示例说明了二分查找的工作原理。我随便想一个1~100的数字。

你的目标是以最少的次数猜到这个数字。你每次猜测后,我会说小了、大了或对了。

假设你从1开始依次往上猜,猜测过程会是这样。

这是简单查找,更准确的说法是傻找。每次猜测都只能排除一个数字。如果我想的数字是99,你得猜99次才能猜到!

更佳的查找方式

下面是一种更佳的猜法。从50开始。

小了,但排除了一半的数字!至此,你知道1~50都小了。接下来,你猜75。

大了,那余下的数字又排除了一半!使用二分查找时,你猜测的是中间的数字,从而每次都将余下的数字排除一半。接下来,你猜63(50和75中间的数字)。

这就是二分查找,你学习了第一种算法!每次猜测排除的数字个数如下。

不管我心里想的是哪个数字,你在7次之内都能猜到,因为每次猜测都将排除很多数字!

假设你要在字典中查找一个单词,而该字典包含240 000个单词,你认为每种查找最多需要多少步?

如果要查找的单词位于字典末尾,使用简单查找将需要240 000步。使用二分查找时,每次排除一半单词,直到最后只剩下一个单词。

因此,使用二分查找只需18步——少多了!一般而言,对于包含n个元素的列表,用二分查找最多需要log2n步,而简单查找最多需要n步。

对数

你可能不记得什么是对数了,但很可能记得什么是幂。log10100相当于问“将多少个10相乘的结果为100”。答案是两个:10 × 10 = 100。因此,log10100 = 2。对数运算是幂运算的逆运算。

对数是幂运算的逆运算

本书使用大O表示法(稍后介绍)讨论运行时间时,log指的都是log2。使用简单查找法查找元素时,在最糟情况下需要查看每个元素。因此,如果列表包含8个数字,你最多需要检查8个数字。而使用二分查找时,最多需要检查log n个元素。如果列表包含8个元素,你最多需要检查3个元素,因为log 8 = 3(23 = 8)。如果列表包含1024个元素,你最多需要检查10个元素,因为log 1024 = 10(210 =1024)。

下面来看看如何编写执行二分查找的Python代码。这里的代码示例使用了数组。如果你不熟悉数组,也不用担心,下一章就会介绍。你只需知道,可将一系列元素存储在一系列相邻的桶(bucket),即数组中。这些桶从0开始编号:第一个桶的位置为#0,第二个桶为#1,第三个桶为#2,以此类推。

函数binary_search接受一个有序数组和一个元素。如果指定的元素包含在数组中,这个函数将返回其位置。你将跟踪要在其中查找的数组部分——开始时为整个数组。

low = 0high = len(list) - 1

你每次都检查中间的元素。

mid = (low + high) / 2  ←---如果(low + high)不是偶数,Python自动将mid向下取整。guess = list[mid]

如果猜的数字小了,就相应地修改low。

if guess < item:  low = mid + 1

如果猜的数字大了,就修改high。完整的代码如下。

def binary_search(list, item):  low = 0    (以下2行)low和high用于跟踪要在其中查找的列表部分  high = len(list)—1
while low <= high: ←-------------只要范围没有缩小到只包含一个元素, mid = (low + high) / 2 ←-------------就检查中间的元素 guess = list[mid] if guess == item: ←-------------找到了元素 return mid if guess > item: ←-------------猜的数字大了 high = mid - 1 else: ←---------------------------猜的数字小了 low = mid + 1 return None ←--------------------没有指定的元素
my_list = [1, 3, 5, 7, 9] ←------------来测试一下!print binary_search(my_list, 3) # => 1 ←--------------------别忘了索引从0开始,第二个位置的索引为1print binary_search(my_list, -1) # => None ←--------------------在Python中,None表示空,它意味着没有找到指定的元素

运行时间

每次介绍算法时,我都将讨论其运行时间。一般而言,应选择效率最高的算法,以最大限度地减少运行时间或占用空间。

回到前面的二分查找。使用它可节省多少时间呢?简单查找逐个地检查数字,如果列表包含100个数字,最多需要猜100次。如果列表包含40亿个数字,最多需要猜40亿次。换言之,最多需要猜测的次数与列表长度相同,这被称为线性时间(linear time)。

二分查找则不同。如果列表包含100个元素,最多要猜7次;如果列表包含40亿个数字,最多需猜32次。厉害吧?二分查找的运行时间为对数时间(或log时间)。下表总结了我们发现的情况。

以上内容来自《算法图解》

《算法图解》

扫码查看详情

编辑推荐:

本书示例丰富,图文并茂,以让人容易理解的方式阐释了算法,旨在帮助程序员在日常项目中更好地发挥算法的能量。书中的前三章将帮助你打下基础,带你学习二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅将主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如,何时采用贪婪算法或动态规划;散列表的应用;图算法;K最近邻算法。

【END】

扫码加入码书群

码书群,是一个可以为你推荐书籍的交流群,在这里,你可以和不同技术的人进行交流,不知道选择什么样的技术书籍学习,也可在群里咨询哦,学习或者工作压力比较大,也可以在群里聊些轻松的话题,也可以在群里咨询物流信息~


基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)内容概要:本文档围绕基于遗传算法的异构分布式系统任务调度算法展开研究,重点介绍了一种结合遗传算法的新颖优化方法,并通过Matlab代码实现验证其在复杂调度问题中的有效性。文中还涵盖了多种智能优化算法在生产调度、经济调度、车间调度、无人机路径规划、微电网优化等领域的应用案例,展示了从理论建模到仿真实现的完整流程。此外,文档系统梳理了智能优化、机器习、路径规划、电力系统管理等多个科研方向的技术体系与实际应用场景,强调“借力”工具与创新思维在科研中的重要性。; 适合人群:具备一定Matlab编程基础,从事智能优化、自动化、电力系统、控制工程等相关领域研究的研究生及科研人员,尤其适合正在开展调度优化、路径规划或算法改进类课题的研究者; 使用场景及目标:①习遗传算法及其他智能优化算法(如粒子群、蜣螂优化、NSGA等)在任务调度中的设计与实现;②掌握Matlab/Simulink在科研仿真中的综合应用;③获取多领域(如微电网、无人机、车间调度)的算法复现与创新思路; 阅读建议:建议按目录顺序系统浏览,重点关注算法原理与代码实现的对应关系,结合提供的网盘资源下载完整代码进行调试与复现,同时注重从已有案例中提炼可迁移的科研方法与创新路径。
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文提出了一种基于非支配排序的蜣螂优化算法(NSDBO),用于求解微电网多目标优化调度问题。该方法结合非支配排序机制,提升了传统蜣螂优化算法在处理多目标问题时的收敛性和分布性,有效解决了微电网调度中经济成本、碳排放、能源利用率等多个相互冲突目标的优化难题。研究构建了包含风、光、储能等多种分布式能源的微电网模型,并通过Matlab代码实现算法仿真,验证了NSDBO在寻找帕累托最优解集方面的优越性能,相较于其他多目标优化算法表现出更强的搜索能力和稳定性。; 适合人群:具备一定电力系统或优化算法基础,从事新能源、微电网、智能优化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于微电网能量管理系统的多目标优化调度设计;②作为新型智能优化算法的研究与改进基础,用于解决复杂的多目标工程优化问题;③帮助理解非支配排序机制在进化算法中的集成方法及其在实际系统中的仿真实现。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注非支配排序、拥挤度计算和蜣螂行为模拟的结合方式,并可通过替换目标函数或系统参数进行扩展实验,以掌握算法的适应性与调参技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值