AVLTree的实现

AVLTree树

AVLTree的性质:

            1.左子树和右子树的高度之差的绝对值不超过1

               2.树中的每个左子树和右子树都是AVL树

               3.每个节点都有一个平衡因子(balance factor--bf),任一节点的平衡因子是-1,0,1。(每个节点的平衡因子等于右子树的高度减去左子树的高度                                      

AVLTree的效率:

              一棵AVL树有N个节点,其高度可以保持在log2N,插入/删除/查找的时间复杂度也是log2N。(log2N是表示log以2为底N的对数,evernote不支持公式。)

 

AVLTree的插入操作:

   下面是左旋和右旋的解析图

下面是左右旋转和右左旋转解析图



AVLTree树代码如下:

旋转操作代码如下:

<span style="font-weight: bold;">void _RotateL(Node*& parent)    //左旋转
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		subR->_left = parent;
		subR->_parent = parent->_parent;
		parent->_parent = subR;

		parent->_bf = subR->_bf = 0;

		parent = subR;
	}

	void _RotateR(Node*& parent)    //右旋转
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}

		subL->_right = parent;
		subL->_parent = parent->_parent;
		parent->_parent = subL;

		parent->_bf = subL->_bf = 0;

		parent = subL;
	}

	void _RotateLR(Node*& parent)      //先左后右旋转
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		// 左单旋
		subL->_right = subLR->_left;
		if (subLR->_left)
		{
			subLR->_left->_parent = subL;
		}

		subLR->_left = subL;
		subLR->_parent = subL->_parent;
		subL->_parent = subLR;

		if (subLR->_bf == 0 || subLR->_bf == -1)
		{
			subL->_bf = 0;
		}
		else // subLR->_bf == 1
		{
			subL->_bf = -1;
		}

		// 右单旋
		parent->_left = subLR->_right;
		if (subLR->_right)
		{
			subLR->_right->_parent = parent;
		}

		subLR->_right = parent;
		subLR->_parent = parent->_parent;
		parent->_parent = subLR;

		if (subLR->_bf == 0 || subLR->_bf == 1)
		{
			parent->_bf = 0;
		}
		else // subLR->_bf == -1
		{
			parent->_bf = 1;
		}

		subLR->_bf = 0;
		parent = subLR;
	}

	void _RotateRL(Node*& parent)       //先右后左旋转
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		subR->_left = subRL->_right;
		if (subRL->_right)
		{
			subRL->_right->_parent = subR;
		}

		subRL->_right = subR;
		<span style="font-family:SimSun;">subR->_parent = subRL;</span>

		if (subRL->_bf == 0 || subRL->_bf == 1)
		{
			subR->_bf = 0;
		}
		else
		{
			subR->_bf = 1;
		}

		parent->_right = subRL->_left;
		if (subRL->_left)
		{
			subRL->_left->_parent = parent;
		}

		</span>subRL->_left = parent;<strong>
		subRL->_parent = parent->_parent;
		parent->_parent = subRL;

		if (subRL->_bf == 0 || subRL->_bf == -1)
		{
			parent->_bf = 0;
		}
		else
		{
			parent->_bf = -1;
		}

		subRL->_bf = 0;
		parent = subRL;
	}</strong>
ABLTree树的结构如下:

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	K _key;
	V _value;

	int _bf;		// 平衡因子

	AVLTreeNode(const K& key, const V& value)
		:_key(key)
		, _value(value)
		, _left(NULL)
		, _right(NULL)
		, _parent(NULL)
		, _bf(0)
	{
	}
};
AVLTree树的插入操作
<span style="font-family:SimSun;font-size:14px;"><strong>template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree()
		:_root(NULL)
	{}

	bool Insert(const K& key, const V& value)
	{
		//1.空树
		if (_root == NULL)
		{
			_root = new Node(key, value);
			return true;
		}

		//2.查找插入的位置
		Node* parent = NULL;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(key, value);
		if (parent->_key > key)
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}

		bool isRotate = false;

		// 3.调整树
		while (parent)
		{
			if (parent->_left == cur)
				parent->_bf--;
			else
				parent->_bf++;

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = parent;
				parent = cur->_parent;
			}
			else    // 当平衡因子是 2 或 -2 时
			{
				isRotate = true;
				if (parent->_bf == 2)
				{
					if (cur->_bf == 1)
					{
						_RotateL(parent);
					}
					else
					{
						_RotateRL(parent);
					}
				}
				else    // 平衡因子是-2时
				{
					if (cur->_bf == -1)
					{
						_RotateR(parent);
					}
					else
					{
						_RotateLR(parent);
					}
				}

				break;
			}
		}

		if (isRotate)
		{
			Node* ppNode = parent->_parent;
			if (ppNode == NULL)
			{
				_root = parent;
			}
			else
			{
				if (ppNode->_key < parent->_key)
				{
					ppNode->_right = parent;
				}
				else
				{
					ppNode->_left = parent;
				}
			}
		}

		return true;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}


	bool IsBlance()
	{
		return _IsBlance(_root);
	}

protected:
	bool _IsBlance(Node* root)     //通过平衡因子判断AVLTree树是否正确
	{
		if (root == NULL)
		{
			return true;
		}

		int left = _Height(root->_left);
		int right = _Height(root->_right);

		int bf = abs(right - left);
		if (bf > 1)
		{
			return false;
		}

		if (bf != abs(root->_bf))
		{
			cout << root->_key << ":平衡因子有问题" << endl;
			return false;
		}

		return _IsBlance(root->_left) && _IsBlance(root->_right);
	}

	int _Height(Node* root)     //返回AVLTree树的高度
	{
		if (root == NULL)
		{
			return 0;
		}

		int left = _Height(root->_left) + 1;
		int right = _Height(root->_right) + 1;

		return left > right ? left : right;
	}
	void _InOrder(Node* root)       //以中序遍历打印AVLTree树
	{
		if (root == NULL)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}

	

protected:
	Node* _root;
};</strong></span>

测试代码如下:

<strong><span style="font-size:14px;">void Test()
{
	AVLTree<int, int> t1;
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	for (size_t i = 0; i < sizeof(a) / sizeof(int); ++i)
	{
		t1.Insert(a[i], i);
	}

	t1.InOrder();
	cout << "IsBlance?" << t1.IsBlance() << endl;
}

int main()
{
       Test();
	system("pause");
	return 0;
}</span></strong>
测试结果如下:







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值